

We put science to work.™

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Rapid Methods for Actinides and Sr-89/90 in Environmental Samples

Sherrod L. Maxwell Senior Fellow Scientist

9-16-14

Department of Energy National Laboratories

.

Savannah River National Laboratory

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

We put science to work.™

. .

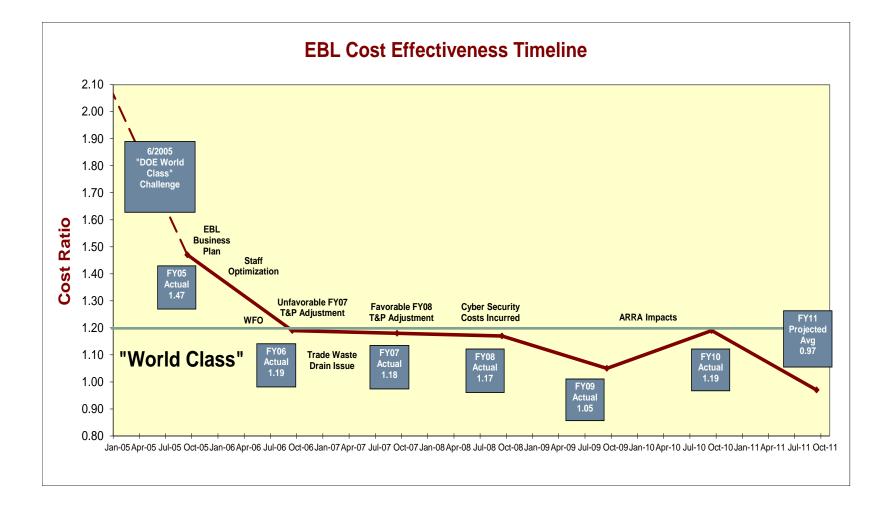
Savannah River National Laboratory (SRNL)

- US Department of Energy National Laboratory
- Published ~ 30 papers in last 10 years on rapid radiochemical methods
 - Environmental, food and bioassay sample matrices
 - Emergency response and more efficient routine analyses

Validated, reliable analytical methods

- US EPA Office of Air and Radiation, National Analytical Radiation Environmental Laboratory, Montgomery, AL
- Centers for Disease Control, Atlanta, GA
- US Air Force Radioanalytical Laboratory, Wright Air Force Base, OH
- ASTM International D19.04 Methods of Radiochemical Analysis and C26 Nuclear Fuel Cycle

- Combine innovative sample preparation with rapid column extraction
 - Water, air filters, soil, concrete, brick, vegetation, food, milk, fish, urine, feces, etc.
- Stacked cartridge technology
 - Sequential separation (5X faster than gravity flow)
 - Time is money
 - Solves waste issues
- Reliable, rapid methods are essential
 - Validated methods
 - Rapid assessment of radiological impact
 - Mitigate dose and protect the public and ecosystems
 - Maintain public trust


Δ

- SRNL- many new methods over last 15 years
- Focus today on
 - Actinides and Sr-89/90 in environmental samples
 - Water, air filters, soil, concrete, brick, vegetation, food
 - Actinides in Seawater
 - 80L, <8 hours sample preparation (will be presented at ERA-12)
 - Sr-90 in seawater
 - Y-90 in seawater (40L), <8 hours sample preparation
- Also new but not enough time to discuss:
 - New Ra-226/Ra-228 methods with cation resin + DGA Resin for water, solid matrices
 - Po-210 in water (DGA Resin and new BiPO₄ microprecipitation)

5

Cost Reduction vs Private Commercial Labs

Savannah River National Laboratory

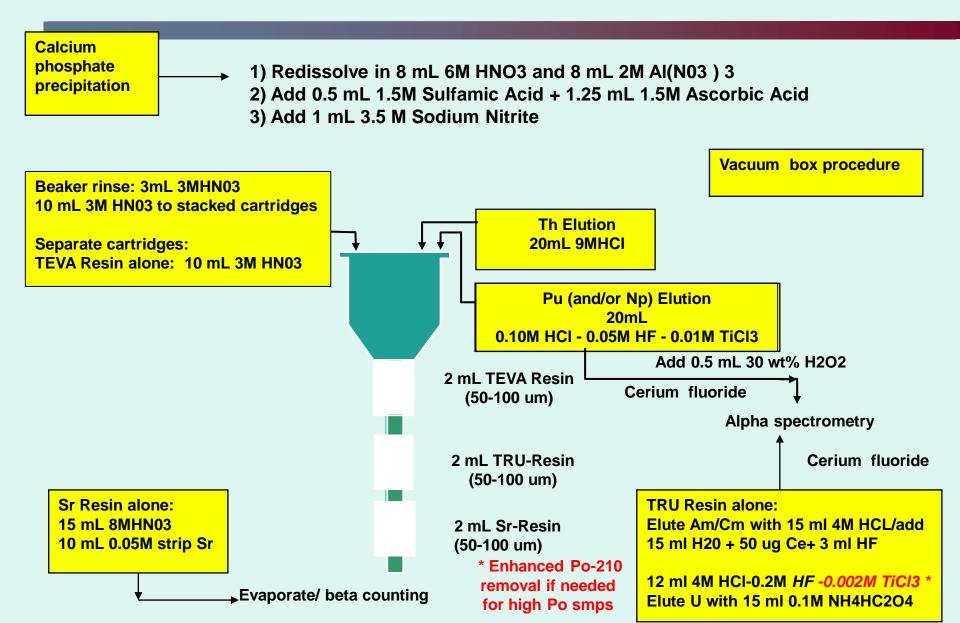
We put science to work.™

Rapid preconcentration and sample matrix removal

- Fresh water (calcium phosphate)
 - Milk (calcium phosphate/acidify ppt. to coagulate fat/protein)
- Seawater
 - Actinides (FeOH₂+Ti)/LaF₃
 - Sr-89/90 (calcium phosphate +FeOH₃)
 - Sr-90 via Y-90 (FeOH₃)/LaF₃
- Air filters digestion with HNO_3/HF
 - Swipes –furnace + acid digestion
- Soil, brick, concrete, asphalt- furnace + sodium hydroxide fusion
 - Large soil- acid leach
- Vegetation/food –furnace ash + rapid fusion
 - Animal tissue- fish, deer, shellfish, acid digestion/furnace

- TEVA/TRU/Sr Resin –stacked cartridges as needed
 - One sample preparation
 - Vacuum box flow rates
- Calcium phosphate ppt.
 - Sample aliquot directly in centrifuge tube
 - No water rinse of ppt.
 - No heat*

* larger samples may need heat briefly to aggregate ppt.
*for 1 liter samples, use large beakers, heat, allow, settle, add to tubes



Maxwell III, SL, "Rapid Column Separation for Actinides and Sr-89/90 in Water Samples", Journal of Radioanalytical and Nuclear Chemistry, 2006, Vol. 267, No. 3, p 537"

Maxwell, S.L, "Rapid Analysis of Emergency Urine and Water Samples", J. Radioanal. Nucl.Chem., 275 (3), (2008)

Actinides and Sr-90 in Water

NIST Radiological Preparedness Exercise (NRIP)

- Emergency analysis samples -1 day notice
 - Dr. Ken Inn, NIST, spoke at RRMC-2004 of the "need to improve efficiency and effectiveness of radioanalytical capabilities"
- Need for faster methods-Homeland Security
 - SRNL has developed rapid methods for actinides and Sr-90 analysis
 - participated IN NIST emergency testing for water, urine soil, air filter, fecal samples
 - fastest times
- Improvements in emergency methods also benefit routine methods
 - Efficiency, capacity, cost reduction

SRNL Improvements in NRIP Report Times

Water samples	NRIP 2006	NRIP 2007	NRIP 2008
Actinides			
Am-241	7.2 hrs	4.9 hrs	3.5 hrs
Pu-238, 239	7.2 hrs	5.5 hrs	3.9 hrs
U-234, 235, 238	7.2 hrs	5.6 hrs	4.1 hrs
Strontium-90	4.6 hrs	4.25 hrs	3.2 hrs

• Actinides (Pu, Np, Am, Cm, U) and Sr-89/90

- HNO₃+ HF +H₂O₂ digestion
- Rapid and quantitative
- TEVA Resin +TRU Resin + Sr Resin (same as water method)
- CeF₃ microprecipitation-alpha spectrometry
 - Use 50 μg Ce (100 μg Ce for U > 370 mBq)
- Sr-89/90- gas proportional counting
 - Gravimetric recovery-Sr carrier (4-5 mg)
 - LSC is an option
- NRIP emergency PT report times <4 hrs</p>

Maxwell, S., Culligan, B. and Noyes, G. (2010), Rapid separation method for actinides in emergency air filter samples, Appl. Radiation and isotopes, December 2010, Pages 2125-2131

MAPEP 25

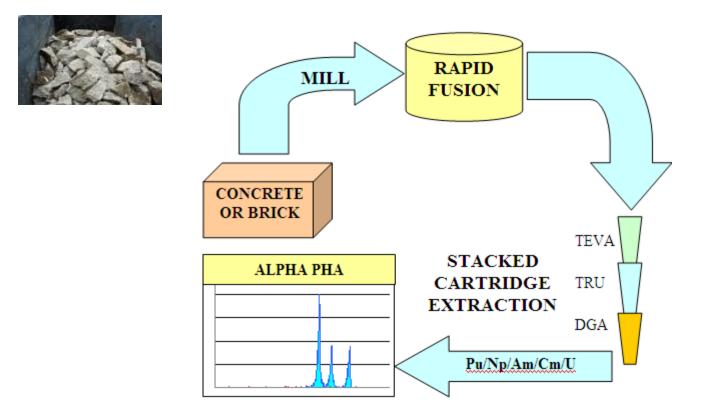
Radiological					Units	s: (Bq/sample)
		Ref		Bias	Acceptance	Unc Unc
Analyte	Result	Value	Flag Notes	(%)	Range	Value Flag
Americium-241	0.141	0.147	A	-4.1	0.103 - 0.191	0.011
Cesium-134	-0.12		А		False Positive Test	0.07
Cesium-137	2.48	2.60	А	-4.6	1.82 - 3.38	0.16
Cobalt-57	4.72	5.09	А	-7.3	3.56 - 6.62	0.17
Cobalt-60	3.11	3.20	А	-2.8	2.24 - 4.16	0.13
Manganese-54	-0.020		А		False Positive Test	0.07
Plutonium-238	0.120	0.1183	А	1.4	0.0828 - 0.1538	0.0096
Plutonium-239/240	0.136	0.135	A	0.7	0.095 - 0.176	0.011
Strontium-90	1.61	1.67	A	-3.6	1.17 - 2.17	0.23
Uranium-234/233	0.153	0.162	Α	-5.6	0.113-0.211	0.012
Uranium-238	0.158	0.168	А	-6.0	0.118-0.218	0.013
Zinc-65	4.07	4.11	А	-1.0	2.88 - 5.34	0.36

± 20% acceptance limits

Fukushima Daiichi Air Filters

Cellulose filters

- HNO₃, H₂O₂, HF digestion
 - Repeat HNO₃/H₂O₂ to dryness several times, then with 3ml 3M HNO₃-boric acid
- Separate using 2 ml Sr Resin cartridige
 - twice for very high total beta samples (>37 Bq/filter)
- High, consistent Sr gravimetric yields (85-95%)
- Gas flow proportional counting
 - Simultaneous drawer counting system
- Results within hours!
- Soil
 - SRNL was also selected to analyze Sr-89/90 in Japanese soil to assist Japan


Sample Preparation Options for Actinides and Sr-89/90 -Soil

Actinides	Digestion	Preconcentration		
 1-10g soil 	rapid fusion	Fe/Ti OH	LaF_3	
• 10-100g	acid leach	Fe/Ti OH	LaF ₃	
• Sr-89/90				
 1-5g soil 	rapid fusion	Fe(OH) ₃ +PO ₄	CaF ₂	
• 5-50g	acid leach	Fe(OH) ₃ +PO ₄	CaF ₂	

- Removes Fe and silicates
- High yields, removal of interferences, fast

- Actinides (Pu, Np, Am, Cm, U)
 - Soil (1-10g)
 - Rapid sodium hydroxide fusion (15-20 minutes)
 - eliminates refractory particles
 - low temperature, multiple samples at same time, inexpensive Zr crucibles
 - faster than several hours on hot plate with HNO3-HF
 - Rapid matrix removal
 - Iron/titanium hydroxide ppt. preconcentration
 - Lanthanum fluoride ppt. matrix removal (no Si flow issues, Fe, Ti removal)
 - TEVA Resin (Pu, Np) +TRU Resin (U) + DGA (Am, Cm) Resin
 - Pu, Np only-TEVA Resin
 - If U not needed, TEVA (Pu, Np) +DGA (Am, Cm) only
 - New TRU+DGA option
 - Alpha spectrometry and/or ICP-MS

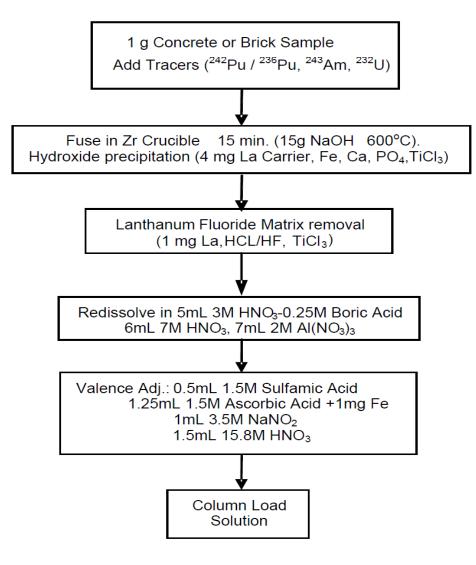
Rapid Fusion Application for Concrete and Brick (soil)

Anal Chim Acta. 2011 Sep 2;701(1):112-8. Epub 2011 Jun 15.

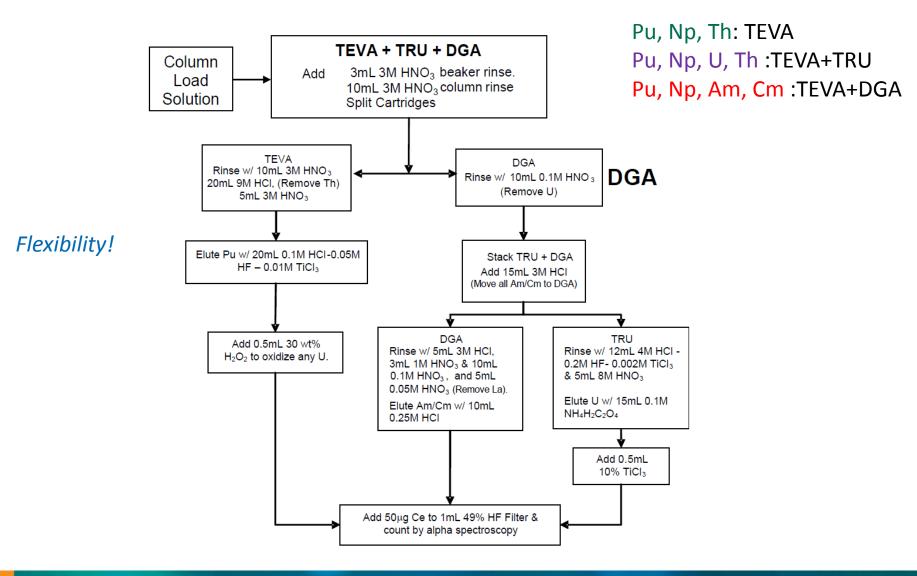
Rapid radiochemical method for determination of actinides in emergency concrete and brick samples. <u>Maxwell SL, Culligan BK, Kelsey-Wall A, Shaw PJ</u>. Rapid Method for Sodium Hydroxide Fusion of Concrete and Brick Matrices Prior to Americium, Plutonium, Strontium, Radium, and Uranium Analyses for Environmental Remediation Following Radiological Incidents

U.S. Environmental Protection Agency

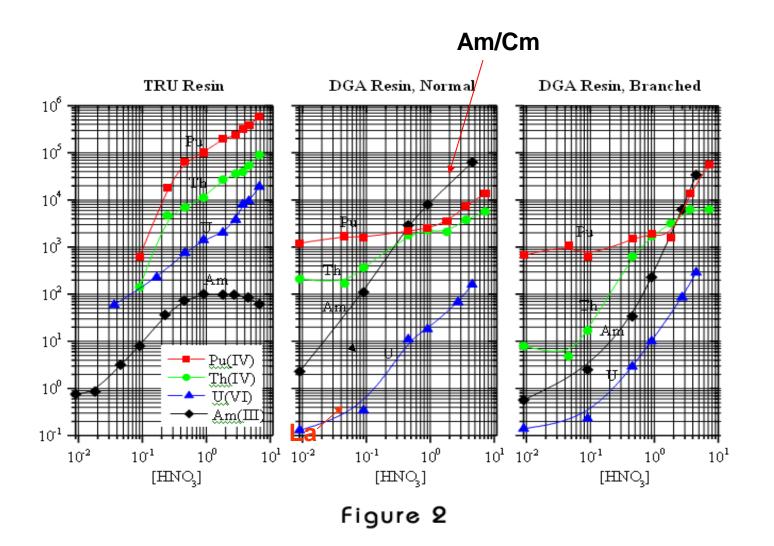
Office of Air and Radiation Office of Radiation and Indoor Air National Analytical Radiation Environmental Laboratory Montgomery, AL 36115


Office of Research and Development National Homeland Security Research Center Cincinnati, OH 45268

Savannah River National Laboratory


We put science to work.™

Rapid Concrete and Brick Sample Preparation


Savannah River National Laboratory

We put science to work.™

Savannah River National Laboratory ~

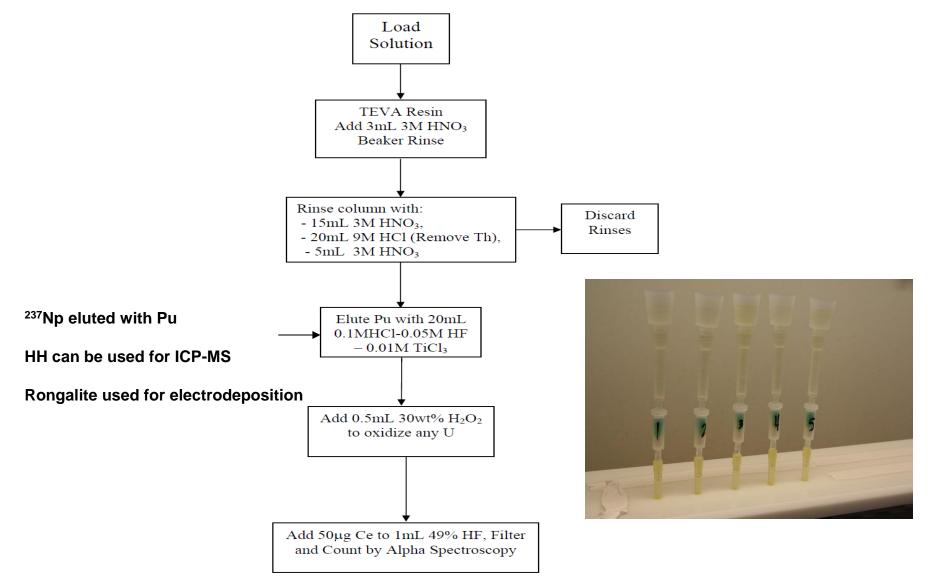
20

Source: http://www.eichrom.com/products/info/dga_resin.cfm

We put science to work.™

Sample	²⁴² Pu Yield	²³⁹ Pu Reference Value	²³⁹ Pu Measured Value	Measured Value	Difference
ID	(%)	(mBq Smp ⁻¹)	(pCi Smp ⁻¹)	(mBq Smp ⁻¹)	(%)
1	94.5	98.0	2.71	100.3	2.3
2	87.7	98.0	2.54	94.0	-4.1
3	93.5	98.0	2.56	94.7	-3.3
4	101.2	98.0	2.50	92.5	-5.6
5	115.6	98.0	2.53	93.6	-4.5
6	97.0	98.0	2.45	90.7	-7.5
7	88.8	98.0	2.63	97.3	-0.7
Avg	96.9		2.6	94.7	-3.3
SD	9.4		0.1	3.2	3.2
% RSD	9.7		3.4	3.4	
	16 hour count				

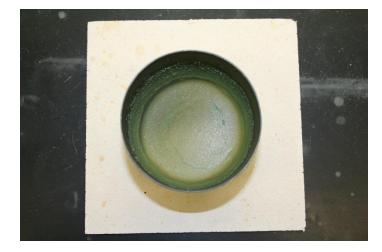
1g MAPEP 24 soil containing refractory Pu-239


- Pu, Np in Soil (10g-100g+)
 - Need effective soil matrix removal and good chemical yields
 - Need good valence control of Np
 - Acid leaching
 - Acid leaching is not appropriate for soil samples containing refractory PuO₂, but has been shown to be acceptable for fallout-derived radionuclides not associated with refractory components in the sample
 - Alpha spectrometry (and/or ICP-MS)

S. L. Maxwell, B. K. Culligan, and G. W. Noyes, Rapid Separation Method for 237Np and Pu isotopes in Large Soil Samples, Applied Radiation and Isotopes, 2010, July 2011, Pages 917-923

S. L. Maxwell, B. Culligan, G. Noyes, V. Jones, ST Nichols and M. Bernard (2010), Rapid determination of 237Np and Pu isotopes in large soil samples by inductively-coupled plasma mass spectrometry, Anal Chim Acta. 2010 Dec 3;682(1-2):130-6. Epub 2010 Oct 8.

Rapid Column Separation for Pu/Np Isotopes

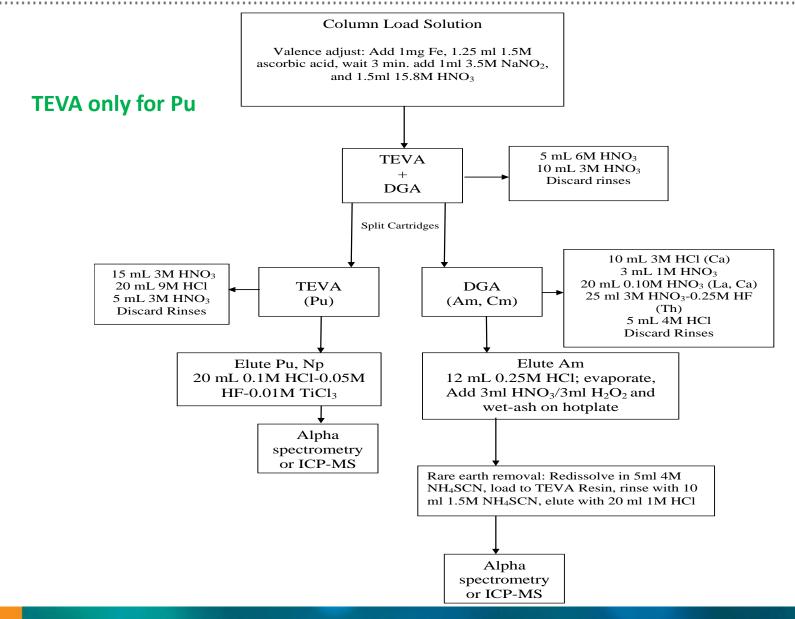

Pu and Np results for 20g samples spiked with MAPEP 21 standard

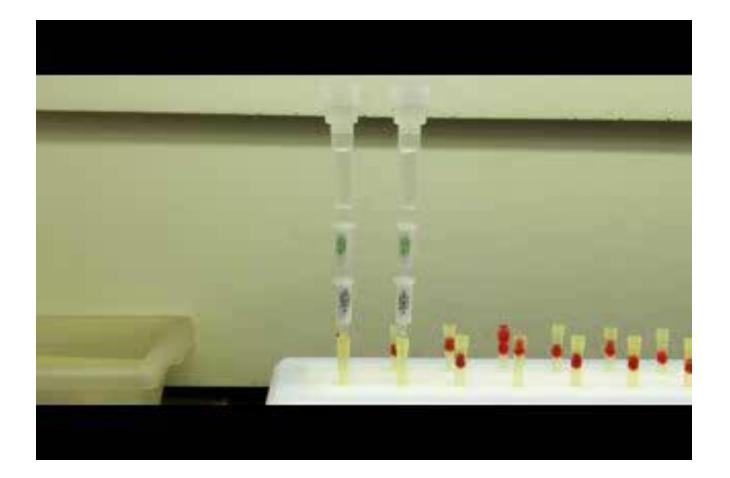
Sample ID	²³⁶ Pu Yield (%)	²³⁸ Pu Measured mBq	²³⁹ Pu Measured mBq	²³⁷ Np Measured mBq
1	91.3	0.25	1.68	35.5
2	82.0	0.28	1.69	45.9
3	100.8	60.3	112.1	34.5
4	89.0	68.8	125.4	38.5
5	85.8	71.8	126.9	38.9
6	93.8	65.9	120.6	36.6
7	85.4	71.0	124.0	41.4
8	87.1	66.6	111.7	41.1
Avg.	89.4	67.4	120.1	39.0
^A Corr. Avg.		67.1	118.4	39.0
1SD	5.9	4.2	6.7	3.7
%RSD	6.6	6.2	5.6	9.5
Reference		63.2	116.3	37.0
% Difference		6.2	1.8	5.5

avg 238 Pu in unspiked 20g sample = 0.265 mBq avg 239 Pu in unspiked sample = 1.685 mBq

^A average spiked sample result corrected for unspiked content

New Rapid Fusion method for 10g soil – Total Digestion





Savannah River National Laboratory

Rapid Separation of Pu and Am

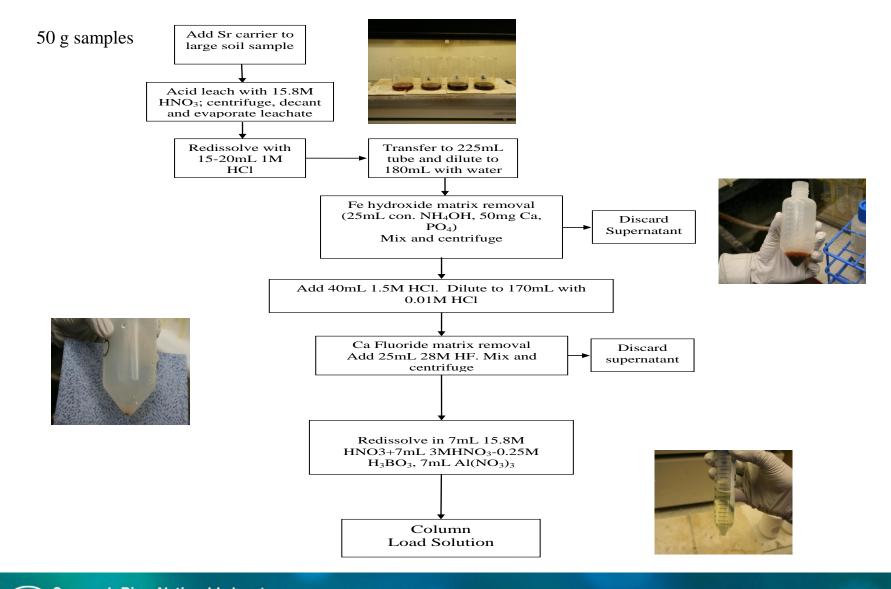
Savannah River National Laboratory

Pu-239 Results for 10g Soil aliquots Using Fusion

Sample	²³⁶ Pu / ²⁴² Pu Yield	²³⁹ Pu Reference Value	²³⁹ Pu Measured Value	²³⁹ Pu Measured Value	²³⁹ Pu Corrected Value	Difference
ID	(%)	(mBq g ⁻¹)	(pCi g ⁻¹)	(mBq g ⁻¹)	(mBq g⁻¹)	(%)
1	91.1	3.43	0.094	3.46	3.39	-1.2
2	80.9	3.43	0.087	3.23	3.16	-8.0
3	89.8	3.43	0.093	3.44	3.37	-1.7
4	76.6	3.43	0.085	3.15	3.07	-10.4
5	83.9	3.43	0.093	3.43	3.36	-2.2
6	84.0	3.43	0.099	3.64	3.64	6.3
7	99.3	3.43	0.091	3.35	3.35	-2.3
8	84.7	3.43	0.097	3.57	3.57	4.2
9	71.8	3.43	0.103	3.80	3.80	10.7
10	82.5	3.43	0.091	3.36	3.36	-2.1
Avg. Spiked Smps	84.5				3.4	-0.7
SD	7.7				0.2	6.3
% RSD	9.1				6.3	
			24 hour count			
			1-6 corrected for blank as	ssay Pu-239/240 (0.074 ml	3a g ⁻¹)	

Spiked with 0.35 g MAPEP 24 soil - refractory Pu-239

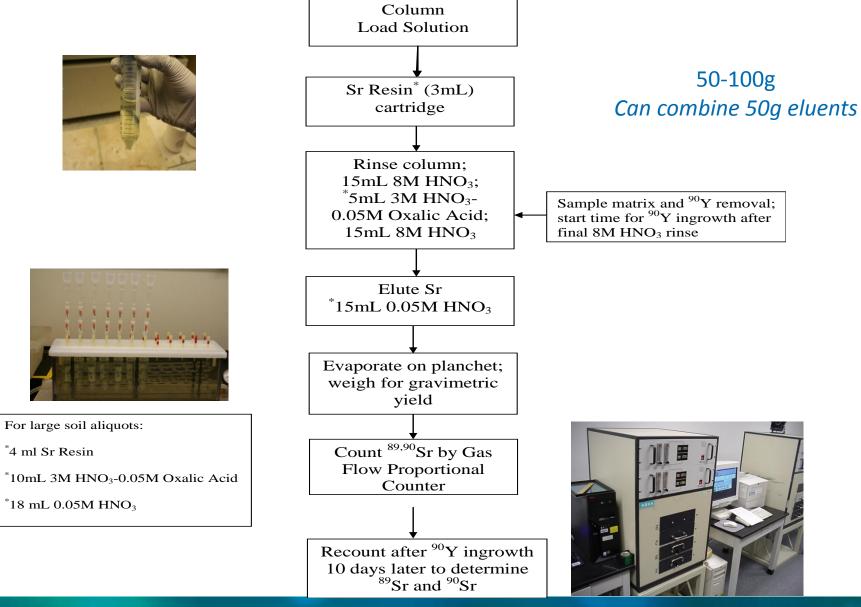
OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS


Am-241 Results for 10g Soil aliquots Using Fusion

Sample	²⁴³ Am Yield	²⁴¹ Am Reference Value	²⁴¹ Am Measured Value	²⁴¹ Am Measured Value	Difference
ID	(%)	(mBq g ⁻¹)	(pCi g ⁻¹)	(mBq g ⁻¹)	(%)
1	83.5	N/A	0.0012	0.04	N/A
2	81.0	2.14	0.0581	2.15	0.5
3	92.2	2.14	0.0601	2.22	3.9
4	83.5	2.14	0.0521	1.93	-9.9
5	82.3	2.14	0.0586	2.17	1.3
6	87.9	2.14	0.0591	2.19	2.2
7	91.3	2.14	0.0504	1.86	-12.9
8	96.4	2.14	0.0598	2.21	3.4
9	97.7	2.14	0.0537	1.99	-7.2
10	86.6	2.14	0.0588	2.18	1.7
11	99.1	2.14	0.0490	1.81	-15.3
Avg. Spiked Smps	89.2			2.07	-1.6
SD	6.5			0.16	6.8
% RSD	7.3			7.55	
			24 hour count		

Spiked with 0.35 g MAPEP 24 soil

Rapid Sr-89,90 Acid Leach Method for Larger Soil Aliquots



Savannah River National Laboratory

VV

We put science to work.™

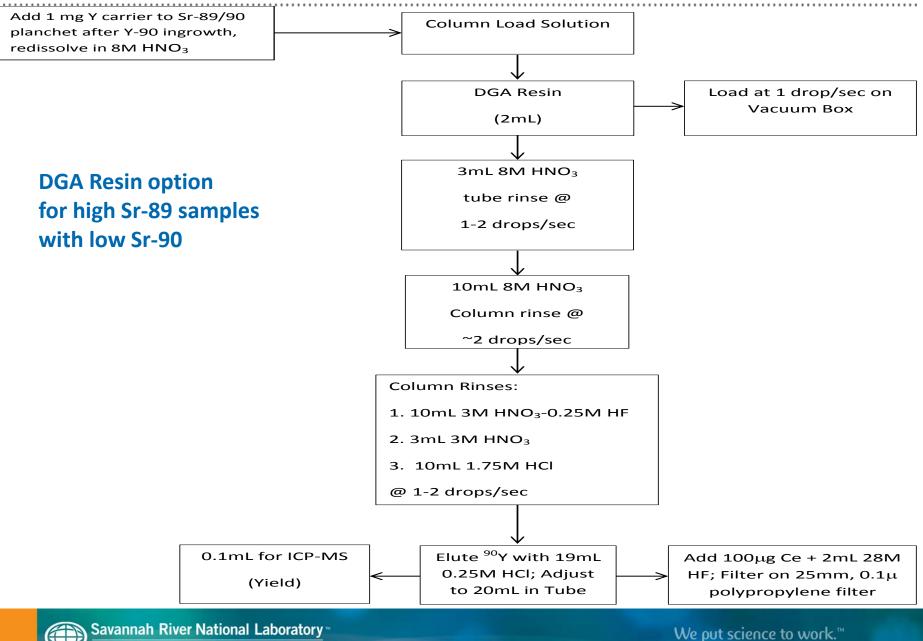
Rapid Sr-89,90 Column Separation Method for Soil

Savannah River National Laboratory

We put science to work.™

Sr-90 Soil Method (50 gram)

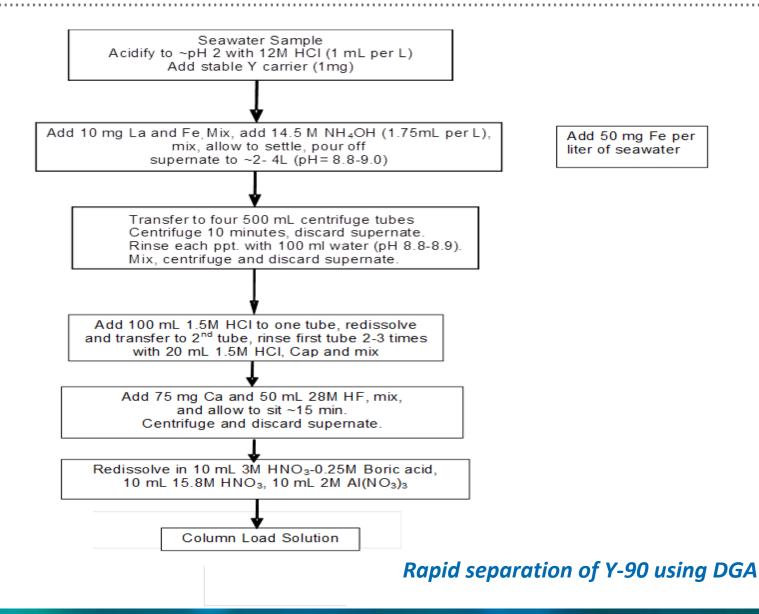
Sample	Sr carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi g ⁻¹)	(mBq g⁻¹)	(mBq g⁻¹)	(%)
1	95.9	0.160	5.92	6.05	2.20
2	98.6	0.160	5.92	6.02	1.69
3	94.6	0.160	5.92	5.82	-1.69
4	91.8	0.160	5.92	6.32	6.76
5	93.2	0.160	5.92	5.96	0.68
6	92.5	0.160	5.92	5.60	-5.41
7	91.2	0.160	5.92	5.85	-1.18
Avg	94.0			5.95	0.43
SD	2.6			0.22	
% RSD	2.8			3.77	
	Magaziradi	es corrected for 1.35 mBq ⁹			


MDC = 0.011 pCi/g (0.41 mBq/g) 90 minute count

MDC = 0.0032 pCi/g (0.12 mBq/g) 1000 minute count

33

Rapid Sr-89, Sr-90 Option to Collect Y-90


OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

- Maxwell, S., Culligan, B. and Utsey, R. Rapid determination of radiostrontium in seawater samples, J Radioanal Nucl Chem (2013) 298:867–875
 - Calcium phosphate enhanced with $Fe(OH)_3$ + Sr-Resin
 - Limited by stable Sr (8mg/L) in seawater
 - 1mBq/L MDA with 6L aliquot and long count time using gas flow proportional counting
- Maxwell, S., Culligan, B., Utsey, R., Hutchison, J. and McAlister, D. Rapid determination of ⁹⁰Sr in seawater samples, J Radioanal Nucl Chem (Aug. 2014) DOI 10.1007/s10967-014-3391-8
 - Rapid collection and purification of Y-90 in <8 hours from 40L
 - MDA for ⁹⁰Sr of < 150 µBq/L using a 40 L aliquot and a 1000 minute count with gas flow proportional counting

35

Rapid Sample Preparation Method for ⁹⁰Sr in Seawater

We put science to work.™

Rapid Sr-90 (Y-90) in Seawater Method (40L)

Sample	Sample Aliquot	Y carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(L)	(%)	(pCi L ⁻¹)	(mBq L ⁻¹)	(mBq L ⁻¹)	(%)
1	10	85.5	8.00	296	310	4.7
2	20	89.2	0.762	28.2	28.1	-0.4
3	30	72.3	0.508	18.8	18.5	-1.6
4	40	87.6	0.381	14.1	13.7	-2.8
5	40	86.5	0.381	14.1	13.9	-1.4
Avg		84.2		Y carrier by ICP-MS		-0.30
SD		6.8				2.9
% RSD		8.1		2 hour count time		

Need to verify decay profile to ensure Y-91 not present or solve decay curve consisting of two independent components

2 ml DGA Resin only

Rapid Actinide Method for Food

approved as a **US Food and Drug Administration (FDA) FERN Standard Operating Procedure** for Pu, Am, Cm, U in food

For use by state labs in Food Emergency Response Network (FERN)

Rapid Determination of Actinides in Emergency Food Samples S. L. Maxwell, B. K. Culligan, A. Kelsey-Wall, Journal of Radioanalytical and Nuclear Chemistry, (2012) 292:339–347

Maxwell, SL, Culligan, BK, and Hutchison, J. Rapid Determination of Plutonium Isotopes in Large Rice Samples, (2013), J. Radioanal. Nucl. Chem, J Radioanal Nucl Chem (2013) 298:1367–1374 *[up to 5kg rice aliquots]*

- Savannah River National Laboratory
 - many new rapid methods for radionuclides in environmental samples
 - high chemical yields and good removal interferences
 - robust digestion for solid samples
 - sequential methods with reduced labor and time can reduce costs
- Validated, reliable analytical methods for environmental samples
 - US EPA Office of Air and Radiation, National Analytical Radiation Environmental Laboratory, Montgomery, AL
 - ASTM International D19.04 Water and C26 Nuclear Fuel Cycle
- Reliable, rapid methods are essential
 - Rapid assessment of radiological impact
 - Mitigate dose and protect the public and ecosystems
 - Maintain public trust

39