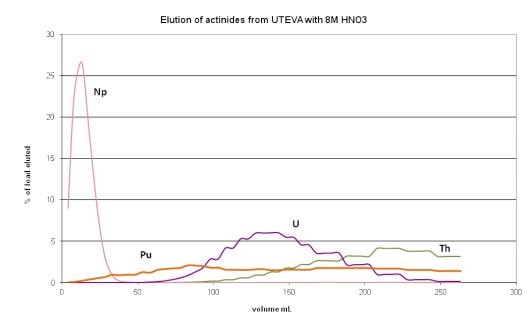
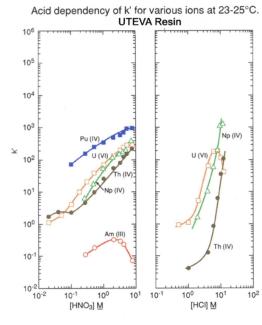

Determination of Am, Pu, U and Sr from large amount of waste samples originated from NPP

Zsuzsa Molnár, Edit Bokori, Nóra Vajda (Radanal Ltd Hungary)

2014 Bath England



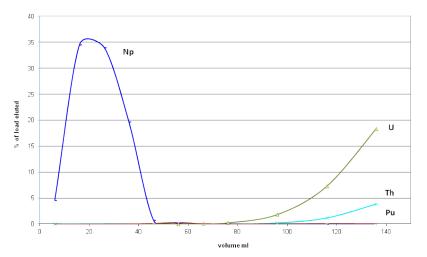
Counts



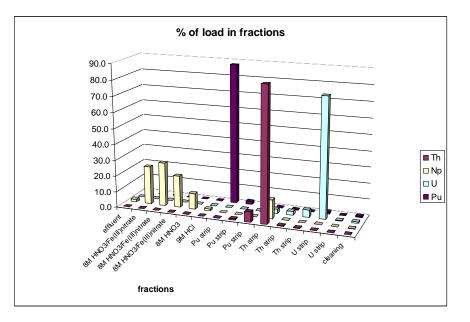
Separation of actinides on UTEVA column from 8M HNO₃

U(VI) and Pu(IV) are well retained on the column Am goes through the column Oxidation state of Pu?

Am, Np are in the effluent, Pu is in different oxidation states


Figures 2 and 3

Horwitz, et al. (HP392)



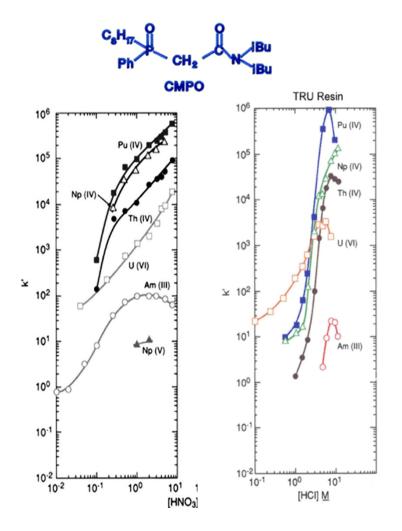
Separation of actinides on UTEVA column from 8M HNO₃/Fe(III)

Elution of actinides from UTEVA with 8M HNO3 and Fe nitrate

U, Th and Pu are well retained volume of loading solution could be more than 50 ml Am and Np are in the load solution Load: 8M HNO₃/Fe(III) UTEVA (34mm) Pu strip: 9M HCI/0.1M NH₄I Th strip: 4M HCI U strip: 0.1M HCI

Separation Am, Cm on TRU column

Load solution after UTEVA column (Triskem method)


evaporation

Ca oxalate precipitation pH 3-4

evaporation oxalate destruction

Load: 2M HNO₃ (ascorbic acid) TRU column (34mm) Am strip: 4M HCI

TRU resin for Am

Separation of Sr on Sr resin

Filtrate after Fe(OH)₂ precipitation

Ca-oxalate precipitation pH 5-6 0.5 g CaCl₂ filtrate oxalate destruction

Load: 3M HNO₃ Sr resin column (3g) Sr strip: dist.water determination chemical recovery by weighing Sr oxalate

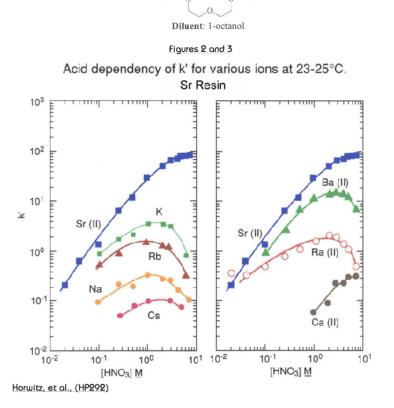


Figure 1 4,4'(5')-di-t-butµlcyclohexand 18-crown-6

Source preparation:

 α source: co-precipitation by NdF₃

β source: Sr-oxalate is disolved in 2 ml of 1M HNO₃, add 10 ml of Prosafe HC

Method validation

2013. Measurement of SRM

MAPEP -06-MaS15

Isotope	M	easur	ed	Reference value			z-score	prec. index
	A Bq/kg		σ Bq/kg	A Bq/kg		σ Bq/kg		%
U-238	35.3	+-	2.2	37.0	+-	3.8	0.4	11.9
U-234	36.0		2.2	38.9	+-	4.5	0.6	13.2
Pu-239,240	44.6	+-	2.7	45.9	+-	6.4	0.2	15.1
Pu-238	53.0		2.9	57.9	+-	4.2	1.0	9.1
Am-241	55.0		2.8	57.1	+-	5.5	0.3	10.8
Criteria							≤ 3	≤25%

Isotope	Sr-90 Bq/kg	σ	z-score	prec. index %
MAP1	298.95	14.22	0.33	14.5
MAP2	318.12	8.89	0.09	14.0
MAP3	287.66	9.56	0.60	14.1
MAP1 (2)	269.84	16.97	0.96	15.1
MAP2 (2)	293.42	7.00	0.47	13.9
MAP3 (2)	276.87	11.33	0.83	14.3
			≤ 3	\leq 25%

Where do we use the procedure?

- Measurement of nuclear wastes and processed wastes
- Determination of Sr and Pu isotopes in ground water samples (we analyse 70-80 I of water) procedure: Water goes through on-site cation exchanger
 - strip cations with HCl

 - coprecipitation of Sr with Ca oxalate Sr resin
- Measurement of environmental samples as soils, aerosols etc.

Some results

Nuclear waste:

Sample code	H13-3			H13-4			
Isotope	A (Bq/l)		σ (Bq/l)	A (Bq/l) σ (Bq/l)			
U-234	2.55E+02	±	3.48E+01	2.46E-01 ± 1.38E-02			
U-235		≤	3.67E+01	3.51E-02 ± 4.90E-03			
U-238	7.55E+01	±	1.79E+01	1.06E-01 ± 8.15E-03			
Pu-239,240	9.45E+03	±	4.23E+02	2.71E-01 ± 2.75E-02			
,							
Pu-238	9.23E+03	±	4.12E+02	2.98E-01 ± 2.93E-02			
Am-241	1.16E+04	±	5.25E+02	2.44E-01 ± 1.60E-02			
Cm-244	1.27E+03	±	1.32E+02	4.02E-02 ± 5.88E-03			
Cm-242		≤	8.62E+01	≤ 3.97E-03			
Sr-90	1.73E+07	±	1.22+06	1.03+02 ± 5.26+00			

Two samples from 2013 the concentrations are very different in the 1st case we analyzed ",20 μ l" of the sample without pre-concentration

Activity concentration of Sr-90 in ground water:

Sample	Volume	Chem.	⁹⁰ Sr		σ		DL
	(L)	recovery	Bq/l		Bq/l		Bq/l
	· · ·	-	•		•		
T2	76	62 %	8.47E-03	±	2.64E-04	≤	1.31E-04
T4	76	33 %	4.26E-04	±	1.03E-04	≤	2.38E-04
T14	78	57 %	2.45E-04	±	5.96E-05	≤	1.37E-04
T18	53.5	45 %				≤	2.57E-04
T19	78.6	55 %	2.24E-03	±	9.24E-05	≤	1.39E-04
T39	70.8	41 %	4.10E-03	±	3.64E-04	≤	7.84E-04

Activity concentration of Pu isotopes in ground water:

Sample	Chem.	Volume	Pu-239/240	Pu-238	
	recovery	(L)	Bq/l	Bq/l	
T2	82%	119.2	≤ 3.07E-06	≤	3.07E-06
T4	29%	160.6	≤ 9.99E-06	≤	9.99E-06
T14	60%	163.4	≤ 4.46E-06	≤	3.83E-06
T18	79%	114	≤ 2.44E-05	≤	2.44E-05
T19	89%	163.4	≤ 2.00E-06	≤	2.00E-06
T39	82%	117	≤ 4.63E-06	≤	3.98E-06

Thank you for your attention