Characterization of a TBP Resin and development of methods for the separation of actinides and the purification of Sn

Dirks C.^a Vajda N.^b, E. Kovács-Széles^c, A. Bombard^d, S. Happel^d

^a Philipps-University, Marburg, GERMANY, ^b Radanal Kft, Budapest, HUNGARY, ^c Centre for Energy Research, Hungarian Academy of Sciences, Budapest, HUNGARY, ^d TrisKem International, Bruz, FRANCE

- General
- Resin characterisation
- Application I Pu in drinking water
- Application II Sn separation

General

- TBP used in PUREX process (LLX)
- TRU Resin (contains TBP) used for Sn separation in geology/archeology
 - Elimination of matrix elements and isobaric interferences
- Determination of long-lived Sn isotopes in rad waste
 - Focus on matrix removal and elimination of isobaric interferences
- > Sn-117m separation for use in nuclear medicine

Focus on Sn/Cd/Sb separation

TBP (Tributyl Phosphate)

> Determination of D_w values for various elements

- Multi-element solutions (HCI and HNO₃) for ICP-MS
 - 10 µg/mL of each element: Al, As, B, Ba, Ca, Cd, Co, Cr³⁺, Cs, Cu, Fe, Ga, Li, Mg, Mn, Na, Ni, Pb, Rb, Sr, Th, U, V, Zr
 - 10 µg/mL of each element: B, Ge, Mo, Nb, P, Re, S, Si, Ta, Ti, W, Zr
- Pu(IV), Np(IV), Th(IV) and U(VI) via LSC
- > 50mg resin contacted with 1.3 or 1.5mL solution for \geq 1h
- Centrifugation and filtration
- Dilution with H₂O for ICP-MS measurements (multi-element solutions),
- Evaporation and dilution in 0.1M HNO₃ for LSC measurements (Pu, Np, Th and U)

> D_W values of the actinides in HNO₃ and HCI

Anionic interferences

> U in 8M HNO₃:

No/little interference from oxalate, interference form sulfates and especially phospates

> Pu in 9M HCl/0,01M NaNO₂:

> Interferences, but $D_w(Pu) > 500 =>$ little impact on Pu retention

- > HNO_3 : only elements with $D_w > 10$ shown
- > $D_W(Ag) \sim 500$ in 0.1M HNO₃ and $Dw(Pu) \sim 100$ in 8M HNO₃
- \geq Other elements show very little affinity in HNO₃

UGM - Bath, 16/09/14

$> D_w$ values in various other conditions

UGM - Bath, 16/09/14

8

INTERNATIONAL

U capacity

- Batch experiments
- ➤ U_{nat}, 50mg resin, 8M HNO₃
- \succ Filtration, evaporation, dissolution in 0.1M HNO₃
- Mixed with LSC cocktail (ProSafe+)
- LSC measurement

> Results:

- > capacity =71-76 mg U/g dry resin in 8M HNO₃
 - comparable (although significantly lower) to UTEVA resin

Elution study

- > 2mL columns, gravity flow
- Pu-239 (Pu(IV)), U-233 and Th-230
- Presence of Fe(III)
- > All eluates collected, evaporated and redissolved in 0.1M HNO₃
- Mixed with LSC cocktail (ProSafe+)
- Elution procedure:
 - Preconditioning: 10 mL 8M HNO₃/0.01M NaNO₂,
 - Loading solution (~ 10 mL)
 - Rinse: 2 x 10 mL 8M HNO₃/0.01M NaNO₂,
 - Elution Th: 10 mL 9M HCI/0.01M NaNO₂,
 - > Elution Th+U: 30 mL 9M HCl/0.01M NaNO₂,
 - Elution Pu: 20 mL 1M HCI

Elution study

Application I

Determination of Pu in drinking water

Pre-treatment:

- 300-500mL water acidified with 2.5mL 1M HNO₃ and spiked with Pu-239, Am-241, Th-230 and U-233 (each 2Bq)
- ➢ 0,5g Mohr's salt
- > 100 μ L N₂H₄ (Fe reduction)
- Heating under stirring for 1h
- > $Fe(OH)_2$ precipitation with 2.5mL NH₃ 25% (pH 7)
- Heating, settling over night
- ➢ Filtration 0.45µm
- Redissolve in 8M HCI
- \succ Evaporation, redissolve in 3x1mL conc. HNO₃
- > $350\mu L N_2H_4 + 1 drop conc. HNO_3 (Test SCN⁻: Fe²⁺)$

Application I

Determination of Pu in drinking water

Pre-treatment:

- \blacktriangleright Add 1.5mL conc. HNO₃ to adjust to 4M HNO₃ and heat to boiling $(N_2H_4$ is destroyed) and
- \blacktriangleright Add 1 drop of conc. HNO₃ and allow to cool down to RT
- \blacktriangleright Addition of NaNO₂ and conc. HNO₃ to adjust to 10mL 8M $HNO_3/0, 1M NaNO_2$.
- Separation as decribed
- Results :
 - Chemical yield for $Pu \sim 69\%$.
 - U contamination in Pu source is <1.4%.
 - No Am or Th found
 - Procedure can be performed in 1 day.

Application I

- Limits of the procedure:
 - With respect to D_W(Pu) in 8M HNO₃ loading volume has to be <20 mL.
 - Very iron rich (Fe content > 2 g) and/or large samples
 (>1-2 g of soil) can probably not be treaded on standard 2 mL columns.
 - Pu(IV) valence adjustment time consuming

Application II

• Sn separation:

- Method development based on D_W values obtained via batch experiments
- Results:

Proposed Sn separation procedure

Application II

- Main isobaric interference for Sn-126 (ICP-MS determination): Te-126
- Decon factor study to verify Sn/Te separation

Te decon.factor in Sn fraction > 1000

UGM - Bath, 16/09/14

Application II

Results

- TBP Resin can be used for the purification of Sn
- Most elements are eluted during load and first rinse (Cd, As, Ag, Ge, Zn, In, ~70% Sb) => 11mL
- ➢ Fe/Ga are removed with 9mL 1M HCI
- For Fe rich sample loading under reducing conditions might be necessary
- >90% Sn eluted in 6mL 0,1M HCI
- \succ ~ 30% Sb co-eluted with Sn => control of Sb oxidation state
- Clean Se/Te separation
- On-going project on Sn-126 determination in rad waste via ICP-MS
 - First step AIX, followed by TBP

Conclusions

- TBP resin characterized with respect to D_W values of various elements in HNO₃ and HCI, and the influence of selected interferents
- TBP resin is well suited for Sn separation. Optimization of Sn/Sb separation through ontrol of Sb oxidation state (important for work with Sb targets).
- Possibility to seperate and determine Pu in drinking water

Thank you for your attention!

TRISKEM INTERNATIONAL

Parc de Lormandière Bât. C - Rue Maryse Bastié - Campus de Ker Lann - 35170 Bruz - FRANCE Tel +33 (0)2.99.05.00.09 - Fax +33 (0)2.99.05.07.27 - www.triskem-international.com - email : contact@triskem.fr