

Absorption Study of Am and Cm to TEVA, TRU and DGA Resins

A. Crable¹, A. Capote², N. Gharibyan¹, S. Happel³, G. Maddigan⁴, R. Sudowe⁵, A. Bombard³

¹ Radiochemistry PhD Program, University of Nevada, Las Vegas - USA

² IAEA, Vienna – AUSTRIA

³ TrisKem International, Bruz - FRANCE

⁴ Ortec/AMETEK, Oak Ridge – USA

⁵ Department of Health Physics, University of Nevada, Las Vegas - USA

Users' Group Meeting, 14th September 2010, Chester, UK

OUTLINE

- > Overview
- > Experimentals
- ➢ Results
- Conclusions

OVERVIEW

• Problem: Am and Cm supposed to behave similarly.

However, sometimes deviating behaviours are observed ?

Overestimation of Cm yields when Am-243 used as tracer

- Need to know the real behaviour of Cm versus Am
- Collaboration with University of Las Vegas (UNLV), IAEA and University of Marburg (KCM)

OVERVIEW

- UNLV:
 - Need for Am/Cm separation
 - Bibliography search: TEVA Resin with LiNO₃ system
- IAEA
 - Several years of experience with Am and Cm yields for their method (QC samples):
 - Data show difference between Am and Cm yields
- TrisKem / KCM
 - Determination of k'(D_w) values for varying conditions taken from literature described methods

EXPERIMENTALS (1/3)

- Experiments based on literature*:
 - Separation of Am/Cm on TEVA in 3.00-4.00M $LiNO_3/0.01M HNO_3$.
- Additional experiments:
 - Extent $LiNO_3$ experiments onto TRU and DGA Resins
 - Test Am/Cm separation on TEVA, TRU and DGA for 0.01M-10M $\rm HNO_3$ and 0.01M-6M HCl
 - Test Am/Cm uptake under various conditions used in literature

EXPERIMENTALS (2/3)

• TEVA Resin:

 Active component = aliphatic quaternary amine (aliquat 336 nitrate)

• TRU Resin:

- Active component = octylphenyl-N,N-di-isobutyl carbamoylphosphine oxyde (CMPO) / TBP
- DGA N Resin:
 - Active component = N,N,N',N'tetraoctyldiglycolamide

EXPERIMENTALS (3/3)

- Step 1: preconditionning of the resin
 - Known amount of resins
 - Known amount of solutions
- Step 2: addition of Am/Cm standards
 - Am-241
 - Cm-244
- Step 3: phase separation, sampling and activity determination
 - LSC counting

RESULTS

• $A_r = A_0 - A_s$ with

 $A_{\rm r}$ the activity on the resin $A_{\rm 0}$ the initial activity introduced in the sample $A_{\rm s}$ the activity in solution

- Weight distribution factor is obtained with $D_w = (A_r x V_s)/(A_s x m_r)$ with V_s the volume of solution in contact with the mass m_r of resin
- k' can be calculated from D_W when correction factor F* of the resin is known k' = D_wxF
- selectivity $\alpha_{Am/Cm} = k'_{Am}/k'_{Cm} = D_{wAm}/D_{wCm}$

Resins	F
TEVA	0.53
TRU	0.56
DGA N	0.57

*Eichrom Website: "Extraction Chromatography of Actinides and Selected Fission Products: Principles and Achievement of Selectivity" August 2008

TEVA RESULTS

RESULTS - LiNO₃ system – UNLV (1/2)

Effects of LiNO₃ on Am and Cm uptake by TEVA

K'

• Literature: best selectivity at 3.6M LiNO₃/0.01M HNO₃, $\alpha_{Am/Cm} = 2.7-2.8$ •maximum separation at 3.75M LiNO₃/0.01M HNO₃, $\alpha_{Am/Cm} \sim 2.58$

• enhancement of separation at higher LiNO₃ concentration

• 4.00M LiNO₃ close to saturation point

TRU, DGA,N: strong uptake of both RN

RESULTS: TEVA Resin - UNVL

Acid dependency, HNO₃ and HCI, of k' for Am and Cm

k'

No Am/Cm uptake over the domain of concentration for both acids

12

TERNATIONA

TRU RESULTS

RESULTS: TRU Resin (1/8) - UNVL

Acid dependency, HNO₃ and HCI, of k' for Am and Cm

Maximum selectivity at 1M HNO₃: $\alpha_{\text{Am/Cm}} \sim 1.43$

• HCI: No uptake

RESULTS: TRU Resin (2/8) - IAEA

Chemical yields obtained in Am and Cm from urine samples from 2003 to 2007.

Conditions of separation on TRU resin:

- Load: 2.5M HNO₃/0.5M AI(NO₃)₃,
- Rinse: 1M HNO₃,
- Elution: Ammonium bioxalate solution.

RESULTS: TRU Resin (3/8) - IAEA

RESULTS: TRU Resin (4/8) - IAEA

Years	Number of	Average recove	Average Deviation of		
	measures	Am-243	Cm-244	Cm vs Am (%)	
2003	48	86 %	74 %	-11 %	
2004	67	92%	87%	-5 %	
2005	52	96%	86%	-9 %	
2006	58	96%	87%	-9 %	
2007	66	95%	85%	-10 %	

If Am and Cm recoveries are supposed similar, Cm chemical recovery is overestimated by about 10% compared to « real » value observed. Where is the Cm gone ?

RESULTS: TRU Resin (5/8) - KCM

Horwitz, et al. (HP193)

RESULTS: TRU Resin (6/8) - KCM

Tested conditions 3M HNO₃ $3M HNO_3$, $1M AI(NO_3)_3$ Standard loading conditions 2M HNO₃, EDTA, 1M AI(NO₃)₃ $3M HNO_3$, $1M AI(NO_3)_3$, $0.1M Ca(NO_3)_2$, Conditions testing the presence of 0.1M Na₃PO₄ phosphate 3M HNO₃, 0.1M Ca(NO₃)₂, 0.1M Na₃PO₄, 3M HNO₃, 0,5mg Fe(III), Condition testing Fe(III) impact 3M HNO₃, 0,5mg EDTA, Condition testing EDTA impact 3M HNO₃, 1M Al(NO₃)₃, Fe(II)sulfoxylate ('rongalite') Reduction conditions for Fe(III) to Fe(II) 3M HNO₃ / 0.05M Fe(II)sulfamate 3M HNO₃ / 0.1M Fe(II)sulfamate 3M HNO₃ / 0.05M amidosulfonic acid Condition testing sulfamic acid impact 3M HNO₃ / 0.1M amidosulfonic acid without Fe 0.1M ammonium bioxalate, NH₄HC₂O₄ Elution conditions 4M HCI-0.1M HF (ACW04)

RESULTS: TRU Resin (7/8) - KCM

Tested conditions	k' _{Am} ± STD		k' _{Cm} ± STD		$\alpha^* \pm \text{STD}$	
3M HNO ₃	86,2	2,1	60,5	1,0	1,42	0,03
3M HNO ₃ , 1M AI(NO ₃) ₃	133	16	101	4	1,31	0,13
2M HNO ₃ , EDTA, 1M AI(NO ₃) ₃	217	12	176	7	1,23	0,07
3M HNO ₃ , 1M AI(NO ₃) ₃ , 0.1M Ca(NO ₃) ₂ , 0.1M Na ₃ PO ₄	126	3	109	10	1,16	0,09
3M HNO ₃ , 0.1M Ca(NO ₃) ₂ , 0.1M Na ₃ PO ₄ ,	95,8	0,2	63,9	1,1	1,50	0,02
3M HNO ₃ , 0,5mg Fe(III),	42,4	1,5	30,1	0,9	1,41	0,05
$3M HNO_3$, 0,5mg EDTA,	90,4	3,4	61,4	0,6	1,47	0,04
3M HNO ₃ , 1M AI(NO ₃) ₃ , Fe(II)sulfoxylate ('rongalite')	6,16	0,17	5,97	0,50	1,03	0,09
3M HNO ₃ / 0.05M Fe(II)sulfamate	55,3	0,8	27,5	0,3	2,01	0,02
3M HNO ₃ / 0.1M Fe(II)sulfamate	28,9	0,7	20,3	1,4	1,42	0,07
3M HNO ₃ / 0.05M amidosulfonic acid	90,0	0,5	60,649	0,001	1,48	0,01
3M HNO ₃ / 0.1M amidosulfonic acid	90,1	0,4	58,0	0,8	1,55	0,02
0.1M ammonium bioxalate, NH ₄ HC ₂ O ₄	0	0	0	0	-	-
4M HCI-0.1M HF (ACW04)	0,39	0,08	0,62	0,02	0,62	0,21

* Selectivity factor $\alpha_{\text{Am/Cm}}$ =(Dw_{Am}/Dw_{Cm})

Results KCM (8/8)

- For most conditions tested, uptake of Am is 1.2 to 2 times higher than Cm (coherent with UNVL results).
- Presence of Al(III) alone or with EDTA increase the retention of Am and Cm by a factor 1.5 to 3.
- Phosphates, EDTA and amidosulfonique acid do not interfere Am <u>and</u> Cm retention.
- Fe(III) and Fe(II) interfere Am <u>and</u> Cm retention.
- No uptake at all of Am and Cm with ammonium bioxalate solution and HCI 4M-HF 0.1M: these conditions ensure 100% recovery of Am/Cm from the resin.
 - The loss of Cm happens prior the elution step

DGA RESULTS

RESULTS: DGA,N Resin (1/4) - UNLV Acid dependency, HNO₃ and HCI, of k' for Am and Cm

HNO₃: uptake of Am/Cm increases with increasing concentration.
Similar uptake of Am/Cm; k'_{Cm}>k'_{Am} from 0.01M to 1M HNO₃.
HCI: uptake at high HCI concentrations. Similar uptake of Am/Cm.

23

TERNATIONAL

RESULTS: DGA Resin (2/4) - KCM

RESULTS: DGA Resin (3/4) - KCM

Tested conditions	k' _{Am} ± STD		$\mathbf{k'_{Cm}} \pm \mathbf{STD}$		$\alpha^{\star}\pm \text{ STD}$	
3M HNO ₃	>5000	-	4033	147	>1	-
3M HNO ₃ , 1M AI(NO ₃) ₃	>5000	-	>5000	-	NA	-
2M HNO ₃ , EDTA, 1M AI(NO ₃) ₃	>5000	-	4826	1264	>1	-
3M HNO ₃ , 1M AI(NO ₃) ₃ , 0.1M Ca(NO ₃) ₂ , 0.1M Na ₃ PO ₄	1669	164	2225	9	0,750	0,098
3M HNO ₃ , 0.1M Ca(NO ₃) ₂ , 0.1M Na ₃ PO ₄ ,	147	4	249	8	0,589	0,042
3M HNO ₃ , 0,5mg Fe(III),	>5000	-	>5000	-	NA	-
3M HNO ₃ , 0,5mg EDTA,	>5000	-	>5000	-	NA	-
3M HNO ₃ , 1M Al(NO ₃) ₃ , Fe(II)sulfoxylate ('rongalite')	>5000	-	2626	128	>1	-
3M HNO ₃ / 0.05M Fe(II)sulfamate	>5000	-	>5000	-	NA	-
3M HNO ₃ / 0.1M Fe(II)sulfamate	>5000	-	>5000	-	NA	-
3M HNO ₃ / 0.05M amidosulfonic acid	>5000	-	3816	162	>1	-
3M HNO ₃ / 0.1M amidosulfonic acid	>5000	-	4452	182	>1	-
0.1M ammonium bioxalate, NH ₄ HC ₂ O ₄	0	0	0	0	-	-

RESULTS: DGA Resin (4/4) - KCM

- For most conditions tested, retention of Am and Cm is so high that it is not possible to elute one against the other even with a good selectivity Am/Cm or Cm/Am. Results are in accordance with those of UNVL for retention.
- Presence of Al(III) increase by a factor ~10 Am <u>and</u> Cm retention.
- Phosphates « interfere » Am/Cm retention especially in the absence of Al(III).
- Fe(III), Fe(II) and EDTA have little or no effect on Am/Cm retention.
- Ammonium bioxalate solution allows 100% recovery of Am/Cm present on the resin (same as TRU resin).

CONCLUSIONS

- Co-separation/elution/determination of Am/Cm
 - DGA resin looks more robust than TRU regarding potential interferents: retention coefficients greater by at least a factor 10.
 - Elution step with ammonium bioxalate. Diluted HCl medium is another option for elution.
 - To be tested on « real » samples
- Am/Cm Separation
 - Possibility on LiNO₃/HNO₃ 0.01M system
 - Under research

ACKNOLEDGEDGMENTS

- Antonio Cuellar
- Ralf Sudowe
- Radiochemistry PhD Program at UNLV
- Alexander Zulauf
- Steffen Happel
- Students KCM

Thank you Questions

