

Universität Marburg

Characterization of a Cu selective resin and its application to the production of Cu-64

Dirks, C.¹, Scholten, B.², Happel, S.³, Zulauf, A.¹, Jungclas, H.¹

On-going diploma thesis C. Dirks, Uni Marburg

[1] Radiochemistry, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
[2] Institute of Neurosciences and Medicine, INM-5: Nuclear chemistry, Forschungszentrum Jülich, Jülich, Germany
[3] TrisKem International, Bruz, France

Outline

- > Why Copper?
- Batch Experiments
 - Selectivity
 - Interferences with Ni or Zn
 - Kinetics
- Column Experiments
 - Simulated Ni target
 - Irradiated Ni target
 - Column size
 - Decontamination factors
 - Conversion of Cu resin eluate via AIX
- Summary
- Outlook

Copper Radionuclides

Isotope	Half Life	Radiation	Source
⁶⁰ Cu	20 min	β ⁺ (93%), EC (7%)	cyclotron
⁶¹ Cu	3.3 hours	$\beta^+(62\%), EC(38\%)$	cyclotron
⁶² Cu	9.74 min	$\beta^{+}(98\%), EC(2\%)$	generator/cyclotron
⁶⁴ Cu	12.7 hours	β ⁺ (18%), EC (41%), β ⁻ (37%)	reactor/cyclotron
⁶⁶ Cu	5.2 min	β ⁻ (100%)	reactor/cyclotron
⁶⁷ Cu	62 hours	$\beta^{-}(100\%)$	reactor/cyclotron

Radiopharmaceutical application^[1,2]

- Suitable half-life ($t_{1/2} = 12.7 \text{ h}$)
- Multiple decay mode
- Well established coordination chemistry

- > **PET imaging**
- > targeted therapy (\rightarrow Cu-67)

Comparison of production routes of Cu-64^[3,4]

Nuclear process	Optimum energy range (MeV)	Thick target yield (MBq/µAh)	
⁶⁴ Ni(<i>p</i> , <i>n</i>) ⁶⁴ Cu ^a	$12 \rightarrow 8$	304	
⁶⁴ Ni(<i>d</i> ,2 <i>n</i>) ⁶⁴ Cu ^a	$17 \rightarrow 11$	430	
68 Zn($p, \alpha n$) 64 Cu ^a	$30 \rightarrow 21^{b}$	116	
⁶⁶ Zn(<i>p</i> ,2 <i>pn</i>) ⁶⁴ Cu ^a	$52 \rightarrow 37$	316	
64 Zn(d ,2 p) 64 Cu ^a	$20 \rightarrow 10$	27.1	
66 Zn(d, α) 64 Cu ^a	$13 \rightarrow 5$	13.8	
^{nat} Zn(d,x) ⁶⁴ Cu	$25 \rightarrow 10^{\circ}$	57.0	

a: Using highly enriched target material, low enrichment will lead to impurities;

b: Below threshold of ⁶⁷Cu impurity *via* the ⁶⁸Zn(p,2p)⁶⁷Cu reaction;

c: Below thresholds of 61 Cu and 67 Cu impurities *via* the 64 Zn(d, α n) 61 Cu and 68 Zn(d,2pn) 67 Cu reactions, respectively.

General procedure for batch experiments

Weight distribution ratios D_w

- Weigh approx. 50 mg of the new Cu resin in an 2 ml Eppendorf tube
- Add 400 µl of the acid (e.g. HCl pH 2)
- Close cap and shake for 30 minutes
- Add 1ml of the standard solution (e.g. 1 mL Multi-element solution)
- Close cap and shake for another 30 minutes
- Withdraw 1 ml of the supernatant, analyze (ICP-MS)
- > All distribution factors were determined in triplicate

Weight distribution ratio

$$D_W = \frac{N_{A0} - N_A}{N_A} \times \frac{V}{m_R}$$

- high $D_w = Extraction$
- low $D_w = Elution$

 N_{A0} = net count rate in the A_0 sample N_A = net count rate in the sample V = Volume of the aqueous phase (1.4 mL) m_R = amount of the resin in g

D_w coefficients for multi 2 in HCl (each element with 10µg/ml)

Loading:

- Good selectivity for Cu
- No selectivity for other selected elements

Elution:

- Low D_w at low pH
- Tests with 4, 6 and 8 M HCl

Figure 1: D_w of Cu and selected elements on Cu resin in HCl in varying pH values

D_w coefficients for multi 3 in H₂SO₄ (each element with 10µg/ml)

- Cu: pH > 2 high D_w
- limited selectivity for iron

Figure 2: D_w of Cu and selected elements on Cu resin in H₂SO₄ in varying pH values

D_w coefficients for multi 1 in HNO₃ (each element with 10µg/ml)

Figure 1: D_w of Cu and selected elements on Cu resin in HNO₃ in varying pH values

Conclusions I

- Stable, high Cu D_w values at pH > 2
- High selectivity for Cu
- No selectivity for Zn or Ni
- Loading solution: HCl pH 2 (or higher)
- Elution with 6 or 8 M HCl

D_w Cu – interferences - HCl pH 2

in presence of various amounts of Ni

Interferences of Zn or Ni

- Even for high amounts of Ni or Zn D_w (Cu) > 1000 at HCl pH 2
- > Up to 1 g target material pro g Resin

- <u>negligible interference!</u>

Kinetics of the Cu-resin

Figure 4: kinetics of Cu on Cu resin in HCl, pH 2

Elution method

Figure 5: Scheme of elution conditions of the elution study

Elution study - simulated Ni target

Loading: L1 : 5 mL HCl pH 2 Rinsing: R1 : 10 mL HCl pH 2 R2 : 10 mL HCl pH 2 Elution: E1 : 5 mL HCl 6 M E2 : 5 mL HCl 6 M

Figure 6: Elution profile obtained for simulated Ni target, 2 mL Cu resin column, elution conditions as described in figure 5

Elution study - irradiated Ni target

- Irradiation of a Ni foil (10 mg) :
 - \succ ($\phi = 13 \text{ mm}, 0.025 \text{ mm}$ thickness)
 - Cyclotron BC1710 at Jülich
 - $E_p = 15 \text{ MeV}$
 - 1 h; 0.5 μA
- Additionally 170 mg nonirradiated Ni-foil

Elution study – irradiated Ni target

Figure 7 : Elution study: % yield of the elution study with an irradiated Ni target

Conclusions II

- ✓ High Cu selectivity
- Negligible interference of Ni or Zn
- ✓ Fast kinetics
- Quantative recovery of Cu in elution studies
- ✓ Very good Cu separation
- ✓ Ni could be recovered in a small volume of HCl pH 2
- Cu elution volume still rather large

Optimization of Cu elution volume

- Use of smaller columns allows reducing Cu elution volume
 - > Quantitative Cu recovery in 1 mL 8M HCl
- No impact on purity

Optimization of Cu elution volume – vacuum-assisted flow

Figure 10/11 : Elution study: elution yields in %, simulated Ni and Zn target, 300 mg Cu resin

- ► Flow rate: 1 mL/min
- ➢ 0.3g columns
- Simulated Ni and Zn targets
- > >90% recovery in 1 mL 8M HCl, quantitative recovery in 1.5 mL

0,1

Load

5 mL HCl pH2

Rinse 1:

5 mL HCl pH 2

No impact on purity

Elu 1:

0.5 mL 8M HCl

Rinse 2:

5 mL HCl pH 2

Elu 2:

0.5 mL 8M HCl

Elu 3:

0.5 mL 8M HC

Decontamination factors D_{f}

- ► Flow rate: 1 mL/min
- ➢ 0.3g columns
- Loading solution: elevated amounts of Ni, Zn, Co, Ga and Au in 5 mL HCl pH 2
- Separation as described before
- > ICP-MS measurement
- > Calculation of deconfactors D_f for Cu fractions
 - ► Fraction E1 (0.5 mL 8M HCl):
 - > D_f : Ni, Co & Zn > 20 000
 - > D_f : Au & Ga > 10 000
 - > Fraction E2 (0.5 mL 8M HCl):
 - > $D_f: Ni > 20\ 000, Co > 40\ 000, Zn > 70\ 000, Au > 50\ 000, Ga > 10\ 000$

Conversion of Cu eluate

- Aim: recovery of Cu in small volume of dilute HCl, water or NaCl solution
- Anion exchange resins (AIX) shows necessary selectivity
- Cu eluate (1mL 8M HCl) from 300 mg Cu resin column directly loaded onto small AIX column
- Rinse with 1 mL 8M HCl
- > Elution with 2 x 1 mL H_2O

Conversion of Cu eluate via AIX

Figure 12/13 : Elution study: elution yields in %, simulated Ni target, 300 mg Cu resin, varying amounts of AIX resin

- > Quantitative load of Cu on AIX from 8M HCl , Cu elution in 1 mL H_2O
 - Conversion works well
- > 150 mg AIX column shows Cu breaktrough in rinsing step
 - Use of 200 mg AIX columns or more advisable
- > Next steps:
 - Smaller elution values possible?
 - Additional purification by AIX step?

Elution study - AIX

- ▶ 400 mg AIX
- > Cu elution in 0.6 0.8 mL water
- > Anion echange conversion step gives additional decontamination from Ni, Zn, Au⁸

Optimized method

- > Vacuum-assisted flow (1 3 mL/min)
- Cu resin (300 mg)
 - ► Load from 1 2 mL HCl pH2
 - ▶ Rinse with 5 mL and 3 mL HCl pH 2
 - ▶ Load and rinse contain ~100% Ni (important for Ni-64 recovery)
 - > Cu elution in 1 1.5 mL 8M HCl
- Conversion on AIX
 - ► Load from 1 1.5 mL 8M HCl
 - Rinse with 2 x 0.5 mL 8M HCl
 - > Cu elution in 0.6 0.8 mL water (or saline solution)
- Cu yield > 95%, high decontamination factors
- Separation time: 18 minutes

Short view to the future

- Cu-DOTA labeling
- Organic impurities content of the Cu fraction
- Recovery of Ni for target preparation
- Optimisation of flowrates
- > Ni-64 and/or Zn target irradiation
- Analytical application (concentration and purification of Cu for ICP-MS)

Literature

- Qaim, S. M.: Decay data and production yields of some nonstandard positron emitters used in PET. Q. J. Nucl. Med. Mol. Imaging 52, 111–120 (2008).
- [2] Smith, Suzanne: Molecular imaging with copper-64. J. of inorganic Biochemistry 98, 1874-1901 (2004)
- [3] Aslam, M.N., Sudár, S., Hussain, M., Malik, A.A., Shah, H.A. and Qaim, S.M.: Charged particle induced reaction cross section data for production of the emerging medically important positron emitter 64Cu: A comprehensive evaluation. Radiochim. Acta 97, 669– 686 (2009)
- [4] Szelecsényi, F., Blessing, G., Qaim, S.M.: Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: Possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl. Radiat. Isot. 44, 575–580 (1993).
- [5] Horwitz, E.P., McAlister, D.R., Bond, A.H., Barrans, R.E. and Williamson, J.M.: A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl. Radiat. Isot. 63(1), 23-36 (2005)
- [6] Dirks, C., Scholten, B., Happel, S., Zulauf, A., Bombard, A., Jungclas, H.: Characterisation of a Cu selective resin and its application to the production of Cu-64 J. Radioanal Nucl. Chem. in press