Determination of ³⁶Cl in decommissioning samples using a Pyrolyser furnace and extraction chromatographic separations

P E Warwick¹, A Zulauf², S Happel³, I W Croudace¹

¹ GAU Radioanalytical, Southampton, UK
 ² Philipps Universitat, Marburg, Germany
 ³ Triskem Ltd, France

Origin of ³⁶Cl

- ³⁶Cl is predominantly produced via neutron activation of naturally occurring ³⁵Cl.
- ³⁶Cl is a long lived (3.02 x 10⁵ y) beta emitting radionuclide (E_{max} = 709.6 keV).
- ³⁶Cl is present in nuclear graphite, concretes, ion exchange resins & desiccants.
- Characterisation of ³⁶Cl in nuclear wastes is important due to its mobility in the geosphere and high soil – plant transfer factor

Current approaches

- Alkaline digestion followed by chemical separation.
- Acid digestion and volatilisation of ³⁶Cl.
- Thermal decomposition of the sample (with or without modifiers) and liberation of Cl species as HCl or Cl₂.
- Final measurement of ³⁶Cl by liquid scintillation counting (high counting efficiency).
- Potential interferences from ³H, ¹⁴C, ³⁵S, ¹²⁹I.

Proposed separation

- Thermal decomposition of the sample and desorption of CI species.
- Samples heated to 900°C in a tube furnace using a controlled heating cycle (10°C/min to 900°C and held for 60 minutes – total time 2 hrs).
- Moist air used to flush system. Sample moistened with 1ml water.
- Combustion products trapped in an alkaline trap. Bubbler connected to furnace tube using ground glass joints.
- ³⁶Cl isolated from other radionuclides using Triskem 'Cl resin' conditioned with AgNO₃
- Total volume of eluent mixed with scintillation cocktail for liquid scintillation analysis.

Thermal desorption of ³⁶Cl

Chlorine-36 standard as NaCl

Bubbler (20ml 6mM Na₂CO₃) changed at 100°C intervals

Recovery of standards

Results for replicate standard analyses

Mean recovery = 86% (all in 1st bubbler)

Blanks run between samples Carry over between samples < 0.1% Residual activity in sample boat ~ 0.3%

Trapping of Cl species

- ³⁶Cl liberated as either Cl₂ or HCl.
- Trapped in 20ml
 6 mM Na₂CO₃
 (bubblers 1+2)
 or 1M NaOH
 (bubbler 3)
- Air flow rate 200 ml/min

Characterisation of the CI resin

Retention of ${}^{36}Cl$ and ${}^{129}l$ in 1M H_2SO_4

lsotope	D _w retention
Cl-36	1600
I-129	1980

D_w values for different KSCN concentrations

	Cl-36	I-129
KSCN conc.	D _w elution	D _w elution
0.01M	1.7	12000
0.05M	0.4	15000
0.1M	0.7	4000
0.2M	0.4	9000

D_w values for different Na₂S concentrations

Na ₂ S conc	Mean D _w
0.04M	40
0.09M	15
0.18M	0.7
0.35M	0.8

 quantative uptake of both isotopes by silver loaded Cl-resin

- ³⁶Cl is eluted quantatively at any KSCN concentration
- ¹²⁹I remains on the resin at any KSCN concentration

• ¹²⁹I is eluted at elevated Na₂S concentrations

Chloride loading capacity

Analyte	Theoretical value	Experimental value
l-	14.9mg	16.3±1.6mg
CI-	4.2mg	4.3 ±0.2mg

Loadings are dependent on the quantity of Ag initially loaded onto the resin. Above values are based on 13mg Ag loading

> Data from Alexander Zulauf, Philipps Universitat, Marburg

Separation of ³⁶Cl and ¹²⁹I from 1M NaOH

I-129 test

Decontamination factors (I)

Decontamination factors (II)

Additional 0.1M H₂SO₄ wash stage added to remove ¹⁴C

Decontamination factors

	³⁶ CI	129
	fraction	fraction
		
³ HTO	> 500	> 2000
¹⁴ CO ₃	7	5000
¹⁴ C modified wash	700	
³⁵ S modified wash	1500	1000
³⁶ CI		> 2000
129	1300	

Liquid scintillation analysis

- 5ml 0.1M NH₄SCN eluent mixed with 15ml Proflow P cocktail.
- Some cocktails contain additives which will reduce any residual Ag compounds co-eluted to elemental Ag resulting in a black solution unsuitable for liquid scintillation counting.
- Proflow P (Meridian) mixes well with the NH₄SCN eluent without reducing residual Ag⁺.

Limit of detection

Sample mass (g)	1.0 g
Recovery %	86 %
Background CPM	11 cpm
Efficiency %	98 %
Count time (mins)	180 mins
LOD (Currie)	0.02 Bq/g

Spiked ion exchange resin

Sample type	Expected value	Measured value
Ion exchange resin	4.1 kBq	$4.3\pm0.1~\mathrm{kBq}$

Analysis of decommissioning samples

Method tested using desiccant from a reactor site.

LSC spectra for bubbler solution (dominantly ³H)

LSC spectra for purified bubbler solution (³⁶Cl)

Benefits over existing approaches

- Rapid procedure with analysis requiring 1 day for 6 samples.
- The total bubbler volume is used in the final measurement increasing sensitivity.
- Applicable to decommissioning samples containing other volatile radionuclides.
- Potential for sequential separation and quantification of other volatile radionuclides.

Summary

- Initial studies indicate that ³⁶Cl is effectively liberated from solid matrices using thermal desorption.
- Other volatile radionuclides co-trapped with ³⁶Cl can be efficiently separated using Cl-resin. The resin will also isolate ¹²⁹I.
- The combination of combustion and isolation of Cl using Cl-columns provides a rapid approach for the separation and purification of ³⁶Cl from solid matrices avoiding the need for time-consuming digestion procedures.
- The Cl and I fractions arising from the separation are readily miscible with commercially available liquid scintillation cocktails.
- Further studies are required to validate the technique and confirm that ³⁶Cl can be quantitatively extracted from the range of materials routinely analysed for ³⁶Cl.

