MnO₂ Resin

09/05/2008 - Madrid

Outline

- § pH dependency of D_W
- § Kinetics
- § Capacity / Amount of resin
- § Interferences
- § Flow-rate
- § Applications

Information on MnO2

Bill Burnett et al:

Use of de-ionised , ground and sea waters

- § Study with variation of
 - pH
 - Kinetics
 - Ratio resin mass vs volume of solution
 - Salinity
 - Flow rates
- § Use of ¹³³Ba as Ra homologue

Josue Moreno (TU Munich):

- § D_w values of natural radionuclides
- § Capacities
- § Interferences

pH dependency

Experimental

- § Batch experiments
- § 5 mL aqueous phase and 100 mg MnO₂ Resin OR 10 mL aqueous phase and 25 mg MnO₂ Resin
- § pH adjustment with HCI or NaOH
- § Magnetic stirring, 60 minutes, room temperature
- § Phase separation by filtration (0,1 μm pores)

Observation

§ Strong shift of the pH in aqueous phase

Measurement

- § filtered MnO₂ via γ -spec or LSC (after resin elution)
- § aqueous phase via γ-spec or LSC

pH dependency Ba-133

D_w - Ra-226

- **§** High retention over the whole pH range
- **§** Radium adsorption greater than 99% for pH>3

D_w - Ba-133

Moreno

- § Overall high retention above pH 4
- § Barium adsorption greater than 99% for pH>5

- § Pb: High D_w values (500 > D_w > 1000)
- § Po: Similar to the behaviour of Pb
- § D_w(Po) overall lower (factor 10)

§ U: rather good retention in near neutral pH range ($D_w \bullet 100$) § Th: overall very good retention 300 < D_w < 1000

Kinetics

- § 10 mL water samples spiked with Ba-133 (0, 0.2, 3.5 and 35‰ salinities)
- § 25 mg MnO₂ resin
- § Magnetic stirrer
- § pH = 7.0
- § 1.0 to 90 minutes contact
- § Measurement of filtered MnO₂ in NaI well-type gamma counter

Kinetics

§ Uptake kinetics depend on salinity

Ba/Ra homology

- § Batch experiments
 - 100 mg MnO₂ / 5 mL solution
- § Column
 - 1 g MnO₂ resin
 - Geometry: $\emptyset i = 0.9 \text{ cm}, H = 6,5 \text{ cm}$
 - Water samples: de-ionised and synthetic sea water

Ba/Ra homology - batch

- § High retention (>99%) above pH 5 for both
- § Good correspondence between Ra and Ba for pH values > 6-7
- § Significant deviation for low pH

Ba/Ra homology on columns

- § Good correspondence between Ba and Ra recoveries for de-ionized and Seawater
- **§** Recoveries > 90% for both matrices

Interferences - Ca

Moreno

§ For [Ca] \leq 300 ppm no interference on Ba and Ra retention (D_w) observed

EICHROM ENVIRONMENT_____

Interferences - carbonate

- Increase of D_w values with increasing carbonate § concentration
- Increase of carbonate concentration connected to increase § of pH 16

Selectivity over other earth-alkalines

- § Overall good selectivity for Ra over Sr, Ca and Mg
- **§** Sr and Ca show similar behaviour

Capacities

Element	Ва	Ba (300 ppm Ca)	Pb	Th
Capacity [mg/g resin]	~ 10	~ 10	~ 9	~ 1,0
pH value (mean)	5,6	4,5	6,5	5,2

- S Capacities in the order of 1 mg/g (Th) to 10 mg/g (Ba)
- § At indicated pH values
- § Capacities might differ when working at other pH values

Flow rate

- § 1.0 L sample water spiked with ¹³³Ba and ²²⁸Ra
- § 1.0 g MnO₂ resin cartridge

- § Peristaltic pump, flow rate 0 -300 mL/min
- § Samples: de-ionized and seawater

Flow rates - results

Ø Problematic: Flow rates for sea water

09/05/2008 - UGM Madrid

Flow rates – results: ¹³³Ba/²²⁸Ra

09/05/2008 - UGM Madrid

Summary - Characterisation I -§ Very high D_w (~1000) for Ra, Ba, Th and Pb

- § Ba and Ra uptake kinetics depend on salinity
- § Good Ba/Ra correspendence for pH >6
- § No interference on Ba/Ra uptake from Ca and CO₃²⁻

Summary - Characterisation II -

- § Good selectivity for Ra over Ca, Sr and Mg
- § Capacities between 1 mg/g (Th) and 10 mg/g (Ba)
- § Flow rates should be kept < 20 mL.min⁻¹ especially for high salt samples to assure:
 - High yields
 - Ba/Ra homology

Applications

- § Ra-226/8 updated two column draft procedure
 - MnO₂/DGA
 - Ca rich water samples
 - Ac yield determination via gravimetry (CeF₃)
- § Preconcentration of Ba and Ra from 5L water samples for gamma spectrometry

New Ra-226/8 method

- § Why new method
 - Increased interest in Ra isotopes (European DW directive)
 - Current methods lengthy and time consuming or need long ingrowth times
- § Advantages of the new method
 - High adsorption of Ra, Ra and other natural radionuclides onto MnO₂ resin from neutral pH solutions
 - Rapid preconcentration from large water samples
 - Selective / robust uptake and seperation of Ac and other actinides on DGA Resin

Ra-226/8 Procedure

ØTwo Resin Method

- MnO₂ Resin for pre-concentration, Ca removal
- DGA-Normal Resin for separation of Ac/Ce and Ra/Ba
- **§** Load sample (0,5 1L, pH 7) on 1g MnO₂
- Strip MnO2 with 15 mL 5 M HCI-1.5% H2O2
- § Add Ce carrier (10 mg Ce)
- § Allow > 30 h for Ac-228 ingrowth
- § Load strip solution on DGA, Normal (2 mL)

Ra-226/8 Procedure

- § DGA: U, Th and Ac-228 retention, Ra and Ba pass
- § Collect load + 5 mL 5 M HCl rinse for Ra-226 and Ba-133
 - Microprecipitation with BaSO4
 - Yield by γ –spectrometry (Ba-133)
 - Ra-226 (and other α –emitting Ra isotopes) by α -spectrometry
- § Strip Ac-228 from DGA with 15 mL 2 M HCI
 - Microprecipitation with CeF₃
 - Gas proportional counting
 - Yield determination Ac on DGA step via gravimetry
 - Yield of preconcentration step via Ba-133

Ra/Ba preconcentration on MnO₂ resin

cpm/mL vs. mL of Eluate

1.5 grams MnO, Resin, slurry packed from Deionized water, Flow rate = 10 mL/min, 22(1) °C

§ Elution profile Ba-133, 1L spiked ground water, 1.5 g MnO₂ resin

09/05/2008 - UGM Madrid

Retention profiles - I

§ Retention of Ra, Th and Ba on DGA, normal in HCl

§ Strong Th uptake at high HCI concentration

§ Ba and Ra show low uptake

EICHROM ENVIRONMENT

Retention profiles - II

Retention profiles - III

§ Retention of Ac and Th on DGA, normal in HCI

§ Ac: strong retention only for high HCl, significantly lower than Th

§ Th: overall good retention, especially for high HCI

Retention profiles - IV

§ Retention of U, Th and Am on DGA, normal in HCl
§ Very similar for high HCl (> 2M HCl)

Measurement of Ba-133, Ac-228 and Ra

- § Ac-228
 - Ac-228 sample preparation via cerium fluoride microprecipitation
 - Counting on GPC
- § Ra and Ba-133
 - Sample preparation via barium sulphate microprecipitation
 - Ba-133 counted by gamma spectrometry
 - Ra isotopes counted by alpha spectrometry

Decontamination Study

- § Selectivity of the DGA resin
- § Decontamination of commonly occurring alpha and beta emitters such as Pb/Bi, Th, Sr/Y were studied
- § 500 mL of tap water spiked with alpha and beta emitters
- § Samples processed using the <u>complete method</u>

Interference added	Deconfactor Ac-fraction
Th-228/U-232	>303
Pb-210/Bi-210	>1542
Sr-90/Y-90	>1208

Ø Overall very good decontamination from potentially interfering elements

Ø Even for Y-90 and Bi-210 • MnO₂?

Method Performance Data

Replicate #	Yield Ba-133	Yield Ra-228	Yield ratio Ba/Ra	Yield bias /%	Yield Ra-226*
1	89	86	1,04	3,4	106
2	76	74	1,03	2,6	93
3	83	77	1,08	7,2	100
Average	83	79	1,05	4,8	99.7
SD	7	6	0,12	0,5	7
RSD / %	8,4	7,6	11,3	11,3	7,0

*Yield corrected

Method Performance Data

- § Good correspondence between Ba-133 and Ra-228 yields
 - Overall bias in the order of 5% Ac-228 separation on DGA?
 Ø Bias not significant within given uncertainties
 Ø Correction via Ce yield for improved method
 - Ba-133 also internal standard for Ra-228/Ac-228
- § Corrected Ra-226 yield indicates absence of bias
- § Relative standard deviation (N=3) in the order of 7 – 8 %

Alpha Spectra: Micro precipitation

1L, Spiked tap water (Ca • 500 ppm)

09/05/2008 - UGM Madrid

Ba/Ra preconcentration for γ-spectrometry

- § Special interest: Ra-228 determination
- § 5L water samples, pH 7
- § Ba-133 as internal standard
- § 3g MnO₂ Resin
- § Stirring over night at room temperature
- § Filtration, drying of the filter
- § γ -spectrometry after 48 h ingrowth period (Ac-228)

Ba/Ra preconcentration for γ -spectrometry

- § Ba-133 yield ~ 80%
- § Quicker, less hands-on time than evaporation / precipitation methods
- § Better reproducibility of source prep. for very Ca rich samples
- § DL_{Ra-228} (t = 4h, 20% rel. Eff.) = 60 mBq.L⁻¹ (*via* Ac-228, 911 keV)
- **§** No significant bias (Reference Material):

Determined activity A(Ra-228) / Bq.L-1	Uncertainty Uc (Ra-228) / Bq.L-1	Reference activity A(Ra-228) / Bq.L-1	Uncertainty Uc (Ra-228) / Bq.L-1	t-value
9,875	0,593	9,264	0,742	0,6

§ Extension to Pb-210 determination via γ -spectrometry?

Summary - Applications -

- First tests and results for applications:
- § Ra-226/8 via two column method
 - Excellent decontamination factors for potential interferents
 - No significant bias
- § Ra-228 determination via gamma spectrometry
 - Good yields
 - Application to larger volumes
 - Smaller amounts of MnO₂