Rapid methods for the determination of actinides, radiostrontium and radium in environmental and bioassay samples

Scope

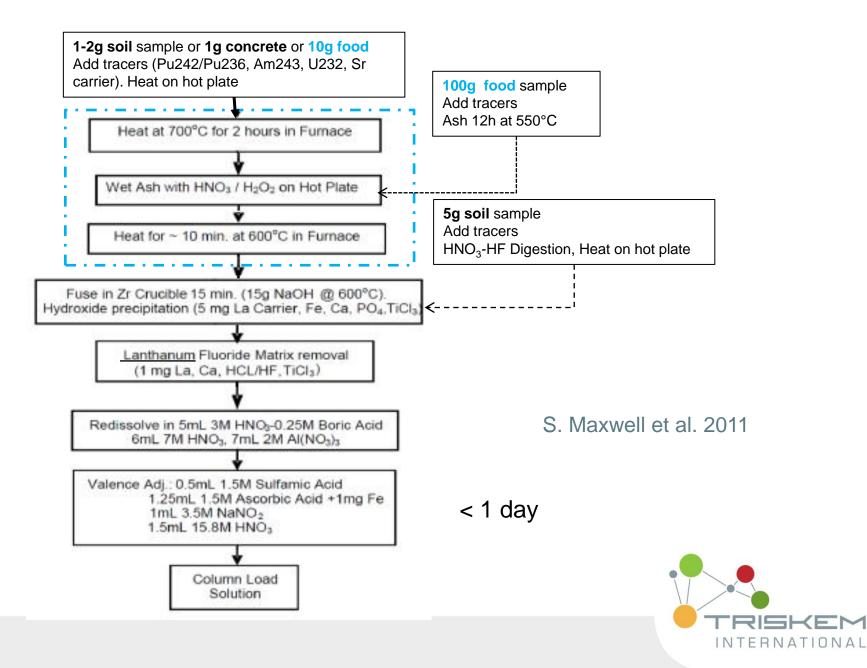
- Actinides and Sr in soil, food, fecal, concrete and brick samples
- Determination of radiostrontium in sea water samples
- Determination of Ra-226 in environmental samples

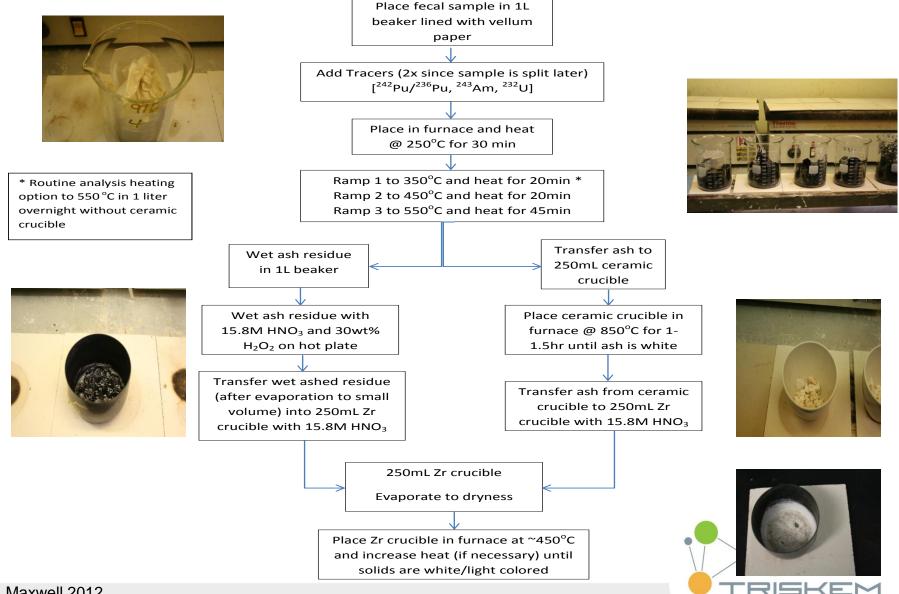
Actinides and Sr in soil, food, concrete and brick samples

SL Maxwell, BK Culligan, A Kelsey-Wall, PJ Shaw:Rapid radiochemical method for determination of actinides in emergency concrete and brick samples. Anal Chim Acta., 701(1):2011;112-118.

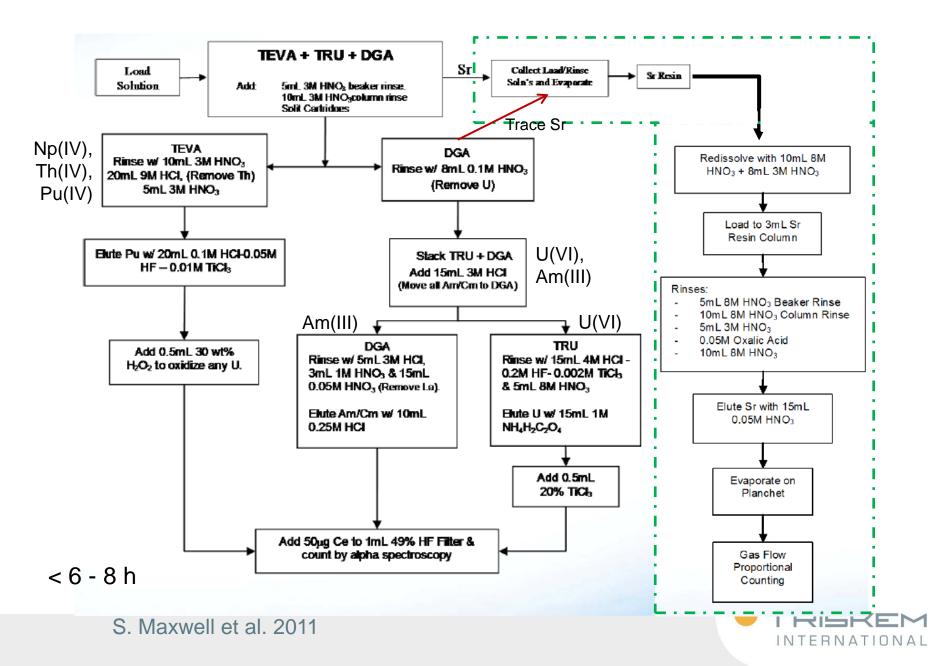
SL Maxwell, BK Culligan, A Kelsey-Wall, PJ Shaw: Rapid determination of actinides in emergency food samples, J. Radioanal. Nucl. Chem., 292(1), 2011, 339-347

S. L. Maxwell and B.K. Culligan: Rapid Method for Determination of Actinides in Fecal Samples, 31/10/12, 58th Annual RRMC, Fort Collins, CO October 29 to November 2, 2012


- Methods can be adjusted for larger sample masses
- Addition of internal standards and Sr carrier (or Sr-85)
- Mineralisation in furnace at 700°C
- NaOH fusion
- Two co-precipitations for matrix removal
 - Fe(OH)₃ / Ca-Phosphate
 - LaF₃ under reducing conditions (TiCl₃ -> U(IV))
- Dissolution in 3M HNO₃ / 1M AI(NO₃)₃ / 0.25M boric acid
- Redox (Pu(IV)): Fe(II) / NaNO₂


- Vacuumbox system
- Stacked TEVA, TRU and DGA Kartuschen -> actinide retention
- Rinse with 3M HNO₃
- Separation of the cartridges (TEVA and TRU/DGA)
 - Th, Pu (Np) purification via TEVA
 - Am/U purification via TRU/DGA
- Microprecipitation
- Eluates from sample load and first rinse (all cartridges) united and evaporated to dryness
- Sr purification on 3 mL Sr Resin column or cartridges (2 mL + 1 mL)

Sample preparation



Rapid Fecal Sample Furnace Heating

INTERNATIONAL

Separation scheme (Sr optional)

Method performance (MAPEP 18 samples)

> Good agreement (bias $15\% \le B \le -15\%$)

High yields for actinides, good yields for Sr

Sample Code	Am yield (%)	Pu yield (%)	U yield (%)	Sr yield (%)
MAPEP-18 soil	96.2±6.33	102.2±10.5	84.0±5.64	60.0±2.8
MAPEP-20	na	na	na	66.0 +/- 6.0
10g baby food	84.6±7.5	93.5±8.1	77.9±13.1	na
10g apple	93.4±9.1	97.5±12.1	88.9±10.9	na
10g squash	88.5±3.5	97.5±5.9	77.9±13.1	na
MAPEP-18 spiked concrete	85.3±6.5	89.6±7.9	76.9±4.4	na
MAPEP-18 spiked brick	93.7±2.9	94.7±9.0	88.1±5.4	na
NRIP fecal	82.7±3.9	96.4±8.2	62.5±7.2	na

S. Maxwell, 2010/11

Results in < 1d – 2d
Method can be adapted to ICP-MS

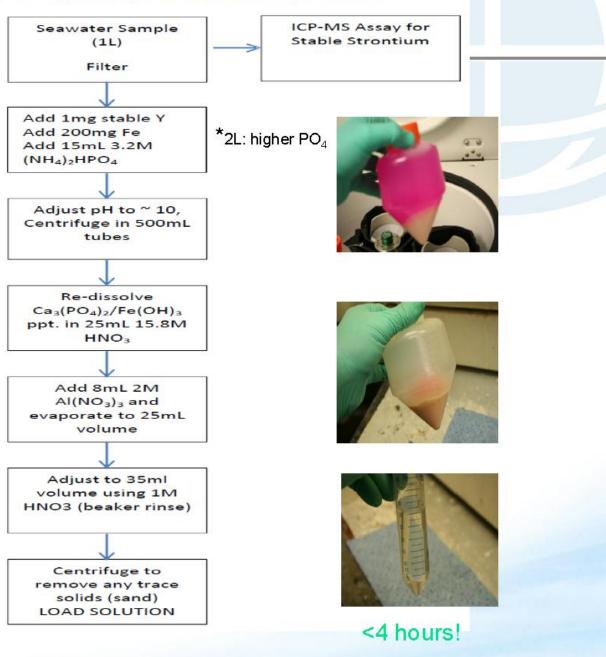
Sr in sea water samples

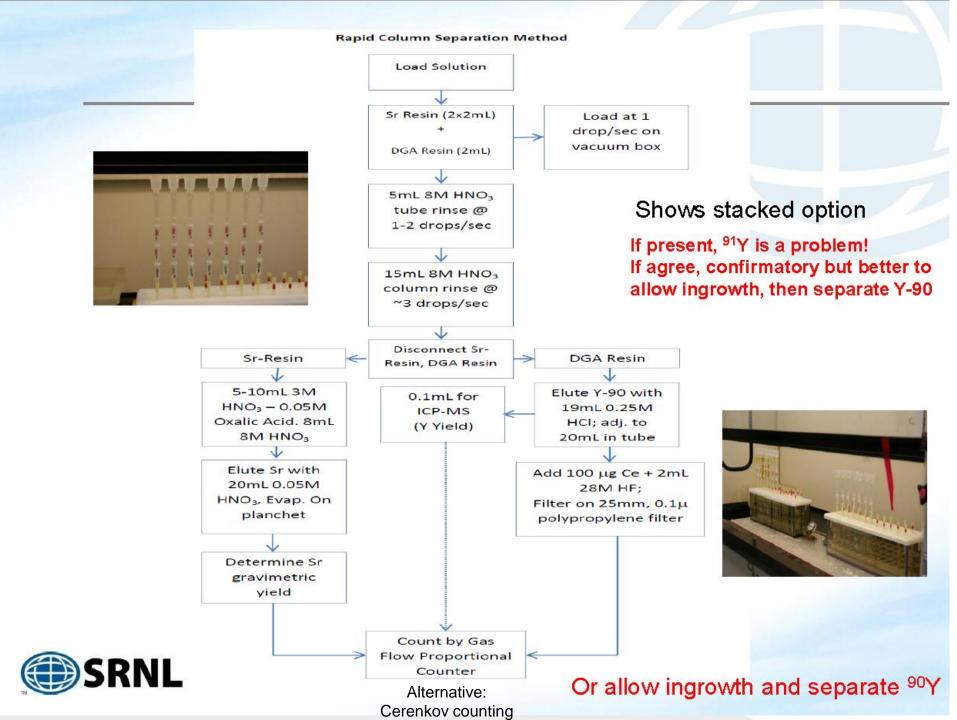
Maxwell S L, Culligan B K, Utsey R C: Rapid method for the determination of Radiostrontium in sea water samples, 31/10/12, 58th Annual RRMC, Fort Collins, CO October 29 to November 2, 2012

Radiostrontium in sea water

- Sea water: 7 8 mg Sr / L, 400 mg Ca / L
- ICP-MS for yield
- Preferably samples > 1L for low detection limits
- Preconcentration by coprecipitation
- 2 options for separation:
 - Sr-89/90: combined Sr/DGA resins
 - Sr-90 only: DGA resin
- Measurement via GPC (LSC or Cerenkov also possible)

Rapid Sr-89/90 Sample Preparation Method for Seawater

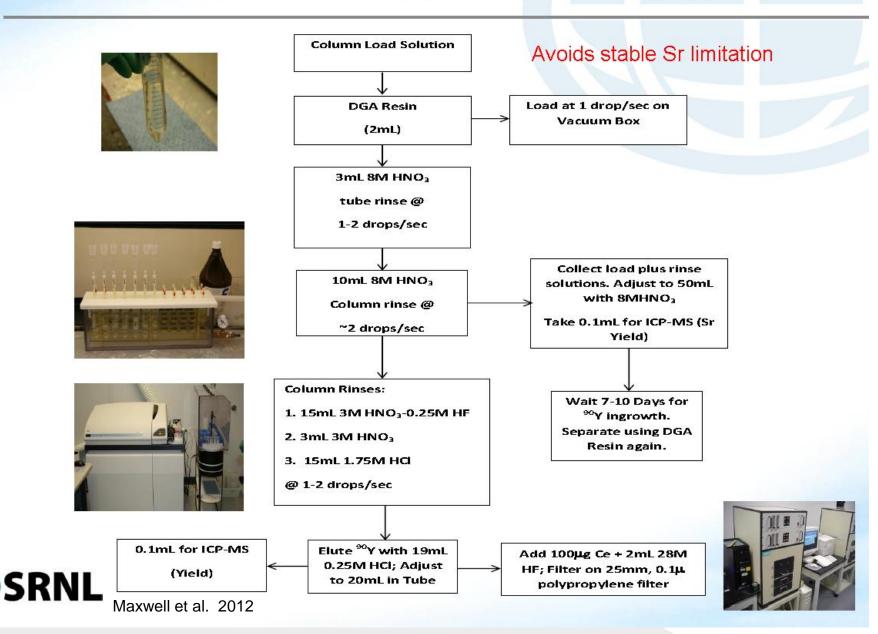




Maxwell et al. 2012

Results Sr-89/90 option

- 1L spiked sea water sample (7,66 mg Sr.L⁻¹), 4 mL Sr resin:
 - 2h counting time
 - Measurement via Sr-90: Yield: 88,8% (+/- 5,9%, N = 11), Bias: 1,2%
 - Measurement via Y-90: Yield: 95,0% (+/- 1,6%, N = 11), Bias: 3,1%
 - Good correspondance
- 2L sea water sample (7,70 mg Sr.L⁻¹), 6 mL Sr resin:
 - 2h counting time
 - Yield: 81,9% (+/- 5,0%, N = 4), Bias: 4,2%
- Measurement via GPC
- MDAs:
 - 1L sea water (2 x 2 mL cartridges)
 - 2L sea water (3 x 2 mL cartridges)
 - MDAs: 9.1 mBq.L⁻¹ (2h count), 4,4 mBq.L⁻¹ (8h count), 3.0 mB.L⁻¹ (1000 min count)
 - 6L sea water (three 2L aliquots combined after purification)
 - MDAs: 1.5 mBq.L⁻¹ (8h count), 1.0 mB.L⁻¹ (1000 min count)



Sr-89/90 option

- Similar methods suggested for environmental water samples
 - Groska J, Molnar Z, Bokori E, Vajda N: Simultaneous determination of ⁸⁹Sr and⁹⁰Sr: comparison of methods and calculation techniques, Journal of Radioanalytical and Nuclear Chemistry, March 2012, Volume 291 (3),707-715
 - T. O'Brien et al.: The rapid determination of Strontium-89 and Strontium-90 in Environmental Samples. Presented at the MARC IX conferences, Kailua-Kona, USA, 29/03/12
- Measurement by Cerenkov counting possible
 - Sr-89 and Y-90 via Cerenkov
 - Very low interference of Sr-90 on Sr-89
 - Advantageous in case of high Sr-89/90 activity ratios

Rapid Column Separation for ⁹⁰Sr (⁹⁰Y) – DGA Only Option

Sr-90 (Y-90) DGA resin only option

• 1 to 10 liter method (DGA Resin only)

- 2 liter aliquot requires one 2 ml DGA Resin cartridge
 - MDA with GFPC and 120 minute count = 9.1 mBq/L
 - MDA with GFPC and 480 minute count = 4.4 mBq/L
 - MDA with GFPC and 1000 minute count = 3.0 mBq/L
- 10 liter aliquot (5 x 2 liter aliquots combined after purification)
 - MDA with GFPC and 480 minute count = 0.88 mBq/L
 - MDA with GFPC and 1000 minute count = 0.61 mBq/L
- < 1mBq/L ⁹⁰Sr with 10L seawater aliquot and < 6 hour sample preparation

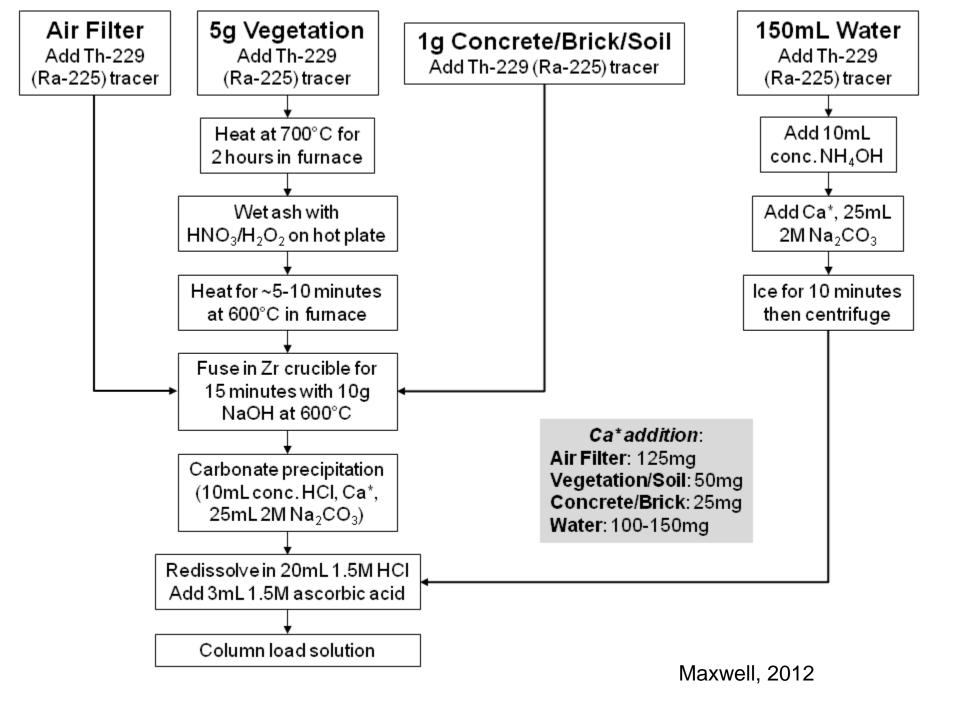
Maxwell et al. 2012

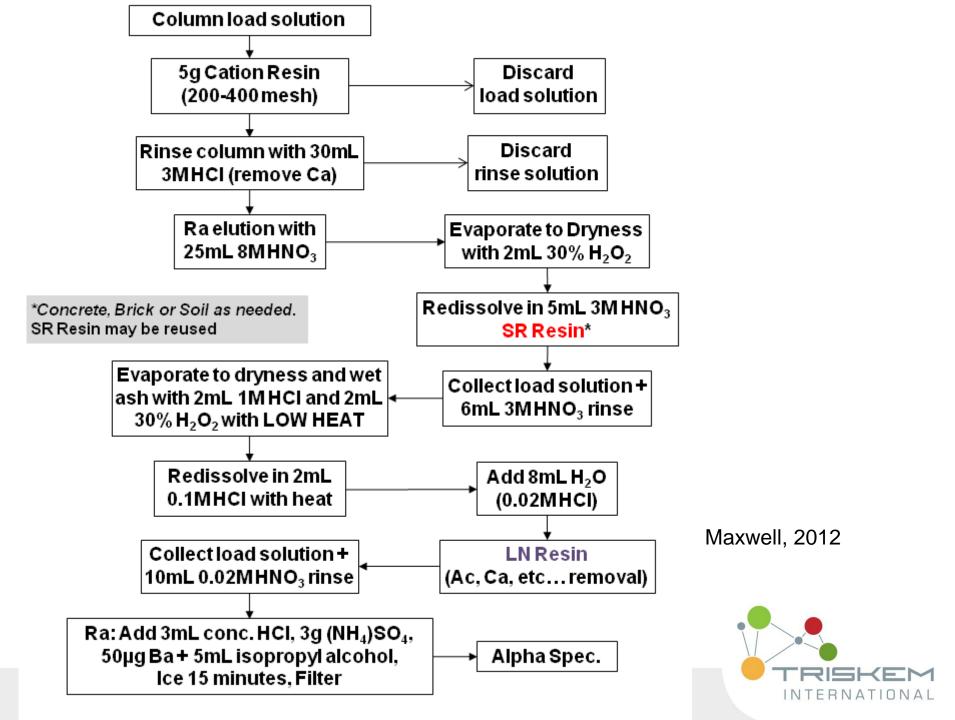
Rapid Method for Sr-90 in Seawater – DGA Resin only

Sample	Smp	Y carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	Vol. (L)	(%)	(pCi L ⁻¹)	(mBq L ⁻¹)	(mBq L ⁻¹)	(%)
1	4	91.6	20.0	740	725	-2.0
2	4	88.7	2.0	74	74	0.1
3	10	94.3	2.0	74	74	0.0
4	10	94.5	2.0	74	66	-10.8
5	10	90.2	2.0	74	76	2.7
	Avg	91.9				-2.0
	SD	2.54				
	% RSD	2.76				
	Y carrier by	icp-ms				
	2 hour count	time				

Maxwell et al. 2012

Rapid determination of Ra-226 in environmental samples


- For solid samples use of MnO₂ resin not possible
 - High matrix load after sample dissolution, precipitation at pH 7
- Solid samples frequently contain elevated amounts of Ba
 - Problematic for preparation of source for α -spectrometry
 - Polyatomic Interferences at ICP-MS measurements
- Ba removal necessary
 - Ba/Ra separation (e.g.SR Resin)
 - Ba-133 can not be used as internal standard
 - Alternative: Ra-225/At-217 (from Th-229), advantage: α-Spectrometry



Rapid determination of Ra-226 in environmental samples

- Rapid method Sherrod Maxwell (SRS)
 - Filter, 5g vegetation, 1g soil, brick or concrete, 150 mL water samples
 - Ashing (2h 700°C, wet ashing, $5 10 \min 600$ °C)
 - NaOH fusion in Zr crucible
 - Carbonate precipitation
 - Cation exchange (Ca removal)
 - Optional: SR Resin (for Ba-rich samples)
 - LN Resin (Ac, Ca,... removal)
 - Microprecipitation and α -Spectrometry

Results spiked real samples

Matrix	Chemical yield / %	Obtained result / mBq per sample	Reference value / mBq per sample	Bias to ref. value / %
Vegetables	87.1 (5.7)	72.8 (5.1)	73.8	-1.2
Concrete	84.6 (6.8)	180.6 (8.0)	184.5	-2.1
Brick	86.5 (6.6)	77.8 (4.6)	73.8	5.5
Air filter	76.7 (4.2)	77.1 (6.2)	73.8	4.5
Soil	75.3 (1.9)	184.9 (6.2)	184.5	0.2
Water	91.8 (6.7)	70.9 (3.7)	73.8	-3.9

Maxwell, 2012

At-217

7400

25 Fr-221 Ra-226 20 Counts • Yields between 75 and 90% Ac-225 15 Good agreement with reference values 10 • Clean spectra 5 0 1 4900 5400 5900 6400 6900 Maxwell, 2012 4400 Energy (keV)

30

Спасибо за внимание! Вопросы?

www.triskem-international.com

http://www.linkedin.com/company/triskem-international?trk=hb_tab_compy_id_2897456

TRISKEM INTERNATIONAL

Parc de Lormandière - Bât.C - Rue Maryse Bastié - Campus de Ker Lann - 35170 BRUZ - FRANCE Tél.+33(0)2 99 05 00 09 - Fax. +33(0)2 99 05 07 27 - www.triskem-international.fr - email : contact#triskem.fr