

ФГУП НПО «РАДОН» Москва

Разработка и апробация метода концентрирования и разделения Sr и Pu(IV) с использованием экстракционной хроматографии на Sr Resin

Ермаков А.И.

Москва - 2013

Сорбционный материал:

✤ Импрегнированный сорбент Sr-resin (Eichrom Ind. Inc., Darien, USA) Матрица - гранулированный макропористый инертный синтетический полимер типа Amberchrom-CG 71: (полиметакрилат)

удельная поверхность $\approx 500 \text{ м}^2/\text{г}$ фракция 50-100 мкм,

стационарная фаза – 1М раствор 4,4'(5')-ди-трет-бутил-циклогексано 18-краун-6 в изодеканоле

Задачи исследований:

 Изучение сорбции природных актинидных элементов, их дочерних продуктов, Pu(IV) и Sr²⁺ на импрегнированном сорбенте Sr resin
Выбор условий для сорбционного концентрирования плутония и стронция из азотнокислых растворов и их последующего хроматографического выделения.

✤Апробация метода на пробах природных объектов – почв и донных отложений. Верификация с помощью IAEA RM.

Сорбция актинидных и осколочных элементов на

импрегнированном сорбенте Sr-resin

Зависимость K_d от кислотности среды для различных ионов (по литературным данным). Материал – Sr·Resin, $t = 22^{\circ}C$, Стационарная фаза – ДЦГ18К6

В 4-6 М HNO₃ величина K_d для Pu(IV) варьирует на уровне 300-400, что объясняют образованием внешнесферных комплексов состава Pu(NO₃)₆²⁻·2H₃O⁺ + 2 ДЦГ18К6.

Его величина для мешающих определению природных альфаизлучателей – урана и тория значительно ниже, порядка 2-5.

Такие свойства Sr resin делают возможным совместное выделение, очистку и последующее разделение Pu и Sr из азотнокислых растворов, полученных при вскрытии твердых проб, с помощью хроматографических процедур.

Изучение сорбции актинидных и осколочных элементов

<u>на сорбенте Sr на модельных растворах</u>

На начальной стадии экспериментов была исследована кинетика сорбции Sr и Pu(IV), а также матричных элементов – U и Th сорбентом Sr-Resin из модельных азотнокислых растворов на основе 5M HNO₃

Сорбция различных ионов на Sr-Resin в модельных растворах на основе 5M HNO₃; V : m = 50, t = 23°C, a) \circ - Pu(IV), Δ - Sr, б) \Box – U (VI), \diamond - Th(IV)

	<i>К_d</i> , см ³ /г			
Состав жидкой фазы	Sr ²⁺	Pu(IV)	U(VI)	Th(IV)
5M HNO ₃	80	77	8,4	10
$5M HNO_3 + 0,2M Ca^{2+}$	96	83	6,1	8,2
5M HNO ₃ + 0,4M SO_4^{2-}	142	26	3,3	2,4

4

Изучение сорбции актинидных и осколочных элементов

на сорбенте Sr на модельных растворах

Влияние концентрации F⁻-ионов на извлечение Pu(IV) (●) и Sr(△) сорбентом Sr Resin. (F⁻ - ион как правило используют при «вскрытии» проб)

Жидкая фаза: 1М раствор Ca^{2+} в 5М HNO₃. Эффект связывания F⁻-ионов при введении 0,1 M Al³⁺ (x) и H₃BO₃ (+)

В качестве комплексообразующего элюента для плутония был выбран раствор щавелевой кислоты

Определение условий селективной десорбции плутония

Концентрация HNO ₃	5 M	3 M	3 M	3 M
Добавление $H_2C_2O_4$	0,1 M	0,1 M	0,15 M	0,2 M
Сорбция Sr, K_d	120 ± 5	129 ± 6	125 ± 5	126 ± 5
Сорбция Pu(IV), <i>K_d</i>	50 ± 3	$3,0 \pm 0,4$	2,2 ± 0,3	$2,5 \pm 0,3$

Концентрирование Pu(IV) и стронция,

их хроматографическая очистка от макро- и микропримесей

Расчетные выходные кривые элюирования (модель Глюкауфа)

Расчетные выходные кривые для Sr на колонке с материалом Sr resin. Колонка 70х7 мм, коэффициент распределения – 72 см³/г, линейная скорость потока – 0,026 см/сек (расход – 0,7 см³/см² мин), Диаметр сферических зерен: 75 мкм и 113 мкм

элюирования тория для $K_d = 10 \text{ см}^3/\text{г}$ при различных коэффициентах диффузии комплекса с ДЦГ-18-К-6 в стационарной органической фазе₆

Расчетная оценка выходной кривой

<u>Хроматографическое концентрирование Pu(IV) и стронция,</u>

их очистка от макро- и микропримесей

Элюирование различных радионуклидов при процедуре комплексного хроматографического выделения Sr и Pu. Материал Sr Resin. Исходный раствор – 0,5М Ca²⁺ в 5М HNO₃

Sr и Pb из элюата разделяют соосаждением SrSO₄ в среде ЭДТА

Практическое применение:

На основе анализа экспериментальных данных предложена методика, основанная на хроматографических процедурах с использованием материала Sr-Resin, которая включает представленные на блок-схеме стадии

Проверка предлагаемого метода проводилась путем анализа стандартных образцов (Reference materials) МАГАТЭ с известным сертифицированным содержанием различных природных и техногенных радионуклидов

<u>Практическое применение:</u>

Сравнительный анализ сертифицированных проб МАГАТЭ (IAEA RM)

ЖС-спектр фракции стронция и альфа-спектр фракции плутония, выделенные из пробы RM IAEA-375 предложенным методом

Результат: получено/сертифицировано (Бк/кг): ^{239,40}Pu – **0,42 ± 0,11** / 0,3 (0,26 – 0,34) ⁹⁰Sr – **63,1 ± 30,1** / 108 (101 – 114)

9

Практическое применение:

Сравнительный анализ сертифицированных проб МАГАТЭ (IAEA RM)

ЖС-спектр фракции стронция и альфа-спектр фракции плутония, выделенные из пробы RM IAEA-135 предложенным методом

Результат: получено/сертифицировано (Бк/кг): ^{239,40}Pu – **51,1 ± 7,8** / 64,5 (58 - 74) ⁹⁰Sr – **236 ± 21** / 213 (205 - 225,8)

Практическое применение:

Сравнительный анализ сертифицированных проб МАГАТЭ (IAEA RM)

ЖС-спектр фракции стронция и альфа-спектр фракции плутония, выделенные из пробы RM IAEA-135 предложенным методом

Результат: получено/сертифицировано (Бк/кг): ^{239,40}Pu - **3,02 ± 0,33** / 3,55 (3,44-3,65) ⁹⁰Sr - **9,8 ± 1,3** / 10,8

<u>Выводы</u>

- 1. Изучены закономерности сорбции Sr²⁺, Pu (IV), урана и тория в азотнокислых средах в присутствии комплексообразующих анионов фторидов, оксалатов, сульфатов, а также Ca²⁺. Приведенные результаты показывают, что ионы Ca²⁺ в концентрации до 0,2 моль/л не оказывает значимого влияния на извлечение следовых количеств исследованных элементов. Добавление SO₄²⁻ ведёт к снижению извлечения всех актинидов и к повышению извлечения Sr²⁺.
- 2. Проведены расчеты по вытеснению различных элементов из колонки со Sr resin. На модельных растворах экспериментально получены выходные кривые элюирования 5М HNO₃ радионуклидов ⁸⁵Sr, ²³⁹Pu и радионуклидов-примесей. При пропускании 20 СКО раствора 0,025М H₂C₂O₄ в 5М HNO₃ достигается приемлемое качество очистки фракций Sr и Pu от матричных элементов и мешающих радионуклидов, в хроматографическом процессе необходимо использовать смолу с размером зерна не более 100 мкм.
- 3. Оксалаты могут использоваться для селективного элюирования плутония при его совместном выделении с Sr^{2+} . Оптимальной является концентрация 0,15M $\mathrm{H_2C_2O_4}$ в 3M HNO₃. В этих условиях величина K_d для Pu(IV) падает до 2,2.
- 4. Разработан хроматографический метод последовательного выделения плутония и стронция из одной аликвоты пробы с использованием Sr resin. Метод апробирован путем анализа сертифицированных природных материалов (почв, донных отложений).