

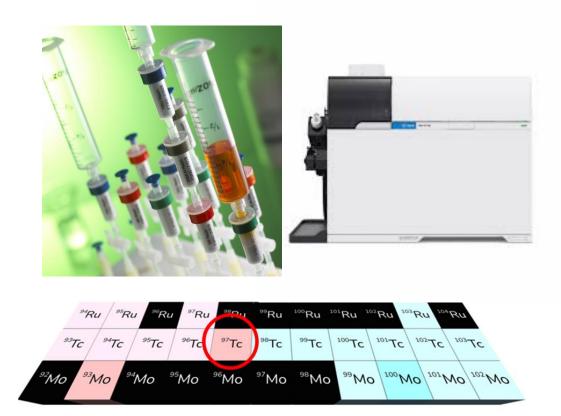
Advances Made in Technetium Separation and Tracer Production

Hibaaq Mohamud, Ross Allen, Ben Russell, Frankie Falksohn, Anu Bhaisare, Jamie Mewburn-Crook, Tom Flower

Nuclear Metrology Group, National Physical Laboratory

Triskem- UGM York 16th September 2022

Overview


Research Motivation

- Importance of Tracers
 Separation of ⁹⁹Tc
- Existing Tracers for Tc
- Separation Methods

Results

- Method Development TK202 Resin
- Method Validation

Next Steps

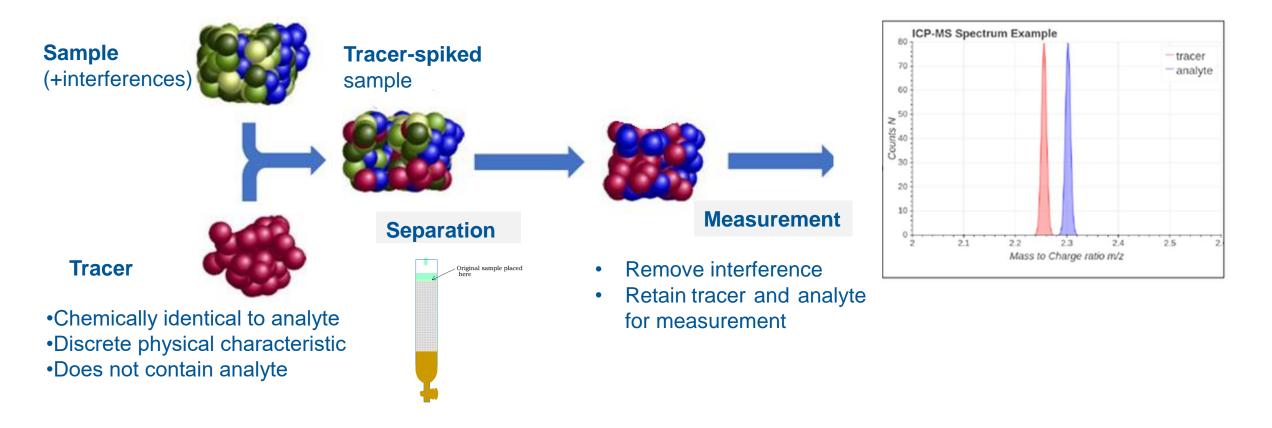
Research Motivation - ⁹⁹Tc Measurement

⁹⁹Tc: Important radionuclide for routine environmental monitoring

- Prevalent in the environment Sellafield (UK) has discharged 1720 TBq over the period of 1952-2008
- Forms highly mobile ions: Tc(VII)O⁴⁻ (under oxidising conditions)
- Long half-life (T_{1/2}: 2.111x10⁵(12) y)

D (Source	⁹⁹ Tc release
Reference	Source	(TBq)
Cefas, 2008	Sellafield reprocessing plant (1952-present)	1720
Shi <i>et al.,</i> 2012a	La Hague reprocessing plant (1966-present)	154
Aarkrog <i>et al</i> ., 1986	Atmospheric weapons testing (1940s-70s)*	140
Uchida <i>et al</i> ., 1999	Chernobyl nuclear accident	0.97
Bailly du Bois <i>et al</i> ., 2012	Fukushima-Daiichi nuclear accident ⁺	220

* Calculated from Cs-137 fallout and fission yield of ⁹⁹Tc

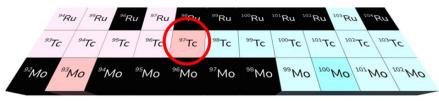

⁺ Calculated from seawater Tc/Cs ratio of 0.01, with 22PBq estimated Cs release

⁹⁹Tc Measurement – Importance of Tracers

Tracers are required to determine the chemical yield of a process e.g., separation scheme. No stable isotopes of technetium exist : need for a supply of radiotracers to support analysis of ⁹⁹Tc.

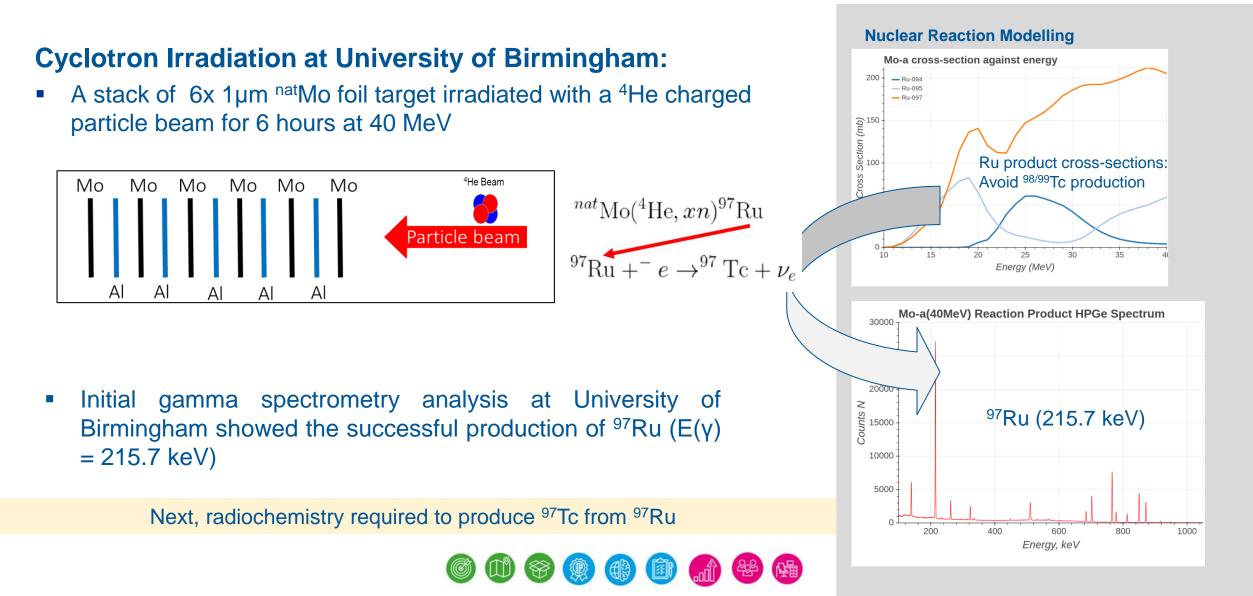
⁹⁹Tc Measurement – ICP-MS

Reference	Matrix	Separation	Measurement	LOD	⁹⁹ ₄₃ Tc β ⁻ _{100%}
Kabai et al. 2013	Milk	TEVA	LSC	0.2 Bq/L	<u>0 43</u> 10 211.5 (11) 10 ³ a β ⁻ (%)
Temba et al. 2016	Filters	TEVA	LSC	3.15 Bq/L	0.00145 (keV)
Guerin et al. 2017	Water	TRU	LSC	5 Bq/L	0.00145 (keV) <u>1 0 89.52</u> 20.36 ns
Su et al. 2017	Cement	TEVA	ICP-MS	8.5 Bq/kg	0 0 Stable
Sahli et al. 2017	Sediment	TEVA	ICP-MS	0.03 Bq/kg	⁹⁹ ₄₄ Ru Q ⁻ = 293.8 keV
Matsueda et al., 2021	Water	TK201	SPE-ICP-MS	0.0059 Bq/L	http://www.lnhb.fr/nuclear-data/module-lara/


Increase in ICP-MS being used for ⁹⁹Tc measurement

⁹⁹Tc Separation and Measurement – Existing Radiotracers

⁹⁹ Tc Measurement	Tracer Used	Reference
ICP-MS	95m Tc: T _{1/2} - 61.96 ± 0.24 d	McCartney et al., 1999
	(measured by gamma spectrometry)	Tagami and Uchida., 2005
	97 Tc: T _{1/2} = 4.21 x 10 ⁶ (16) y (measured by isotope dilution ICP-MS)	Beals et al., 1997
LSC ICP-MS	Stable Re*	Butterworth et al., 1995

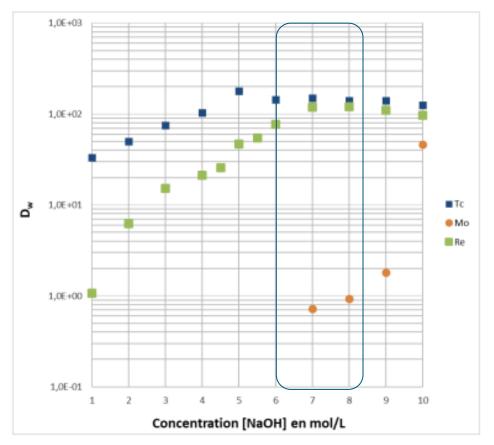


Tracer most suited for ICP-MS is ⁹⁷Tc. However, it is currently not widely supplied by industry.

⁹⁷Tc Tracer - Production Route

Technetium Separation with TK202 Resin

Extractant system: polyethylene glycol (PEG)


н∱о∕у[⊔]он

Separation of <u>Technetium(VII) from alkaline</u> <u>samples</u>

- e.g. Tc from Mo foil target
- Load sample in 7-9 M NaOH
- Ru behaviour unclear
 - Tc can be eluted directly using dilute acid or
- deionised water → expect minimal Mo
 breakthrough

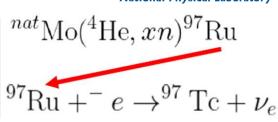
Well established method for both ⁹⁹Tc and ⁹⁷Tc measurement via ICP-MS

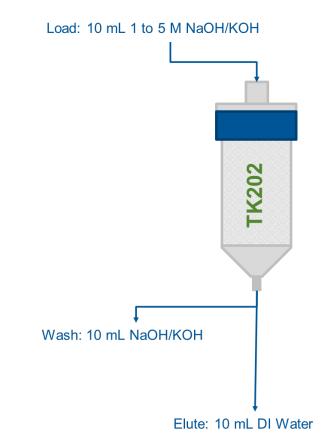
TK202 TrisKem Product Sheet

Method Development – TK202 Resin

Radiochemistry Requirements:

- Resin capable of handling > 100 mg of Mo foil target and alkaline conditions
- Low Mo breakthrough for both Ru and Tc fraction collected.

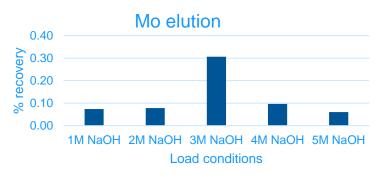

Mo Target Dissolution

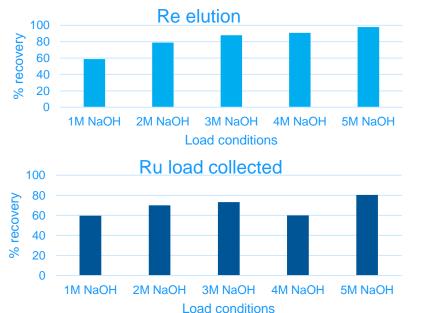

- 1. Alkaline foil dissolution with 30% or 50% hot hydrogen peroxide.
- Dissolve the resulting precipitate in either NaOH or KOH (1 to 5 M) for direct loading onto TK202 resin (method outlined by Pawlak et al., 2016 used)

TK202 Separation – Inactive Test

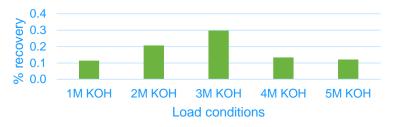
- 1. Spike alkaline Mo sample with Ru and Re (analogue of Tc used for initial testing)
- 2. Load sample (NaOH or KOH) directly to 2 mL TK202 resin \rightarrow collect Ru
- 3. Elute Re using DI water
- 4. Collect load, wash and eluted fraction and measure by ICP-MS to determine optimal method assess which method leads to **low Mo breakthrough, high Ru and Re recovery**

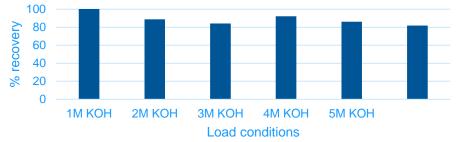
🚳 😢 🚯 🛞 🛞 🕲 🕼

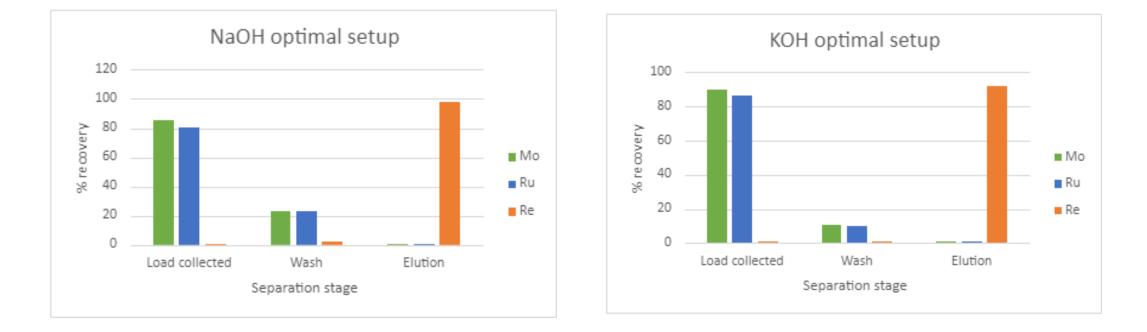




Method Development – NaOH and KOH


NaOH - TK202 Resin

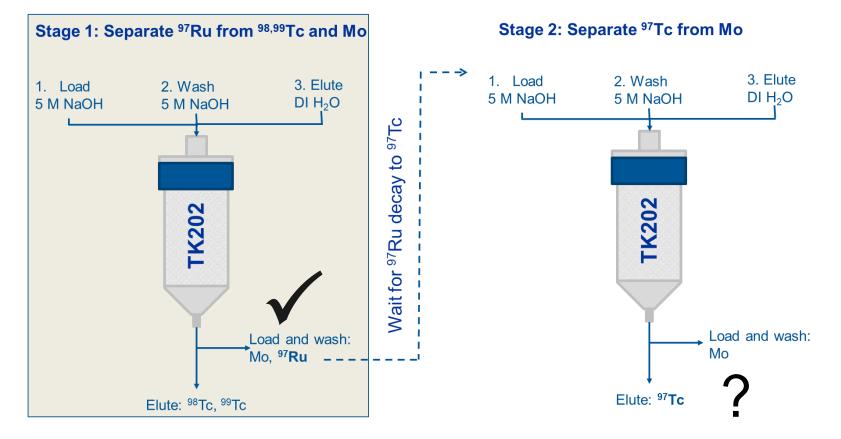

KOH - TK202 Resin


Ru load collected

Method Development – Optimal Method

Low Mo breakthrough and high Ru (load) and Re (eluent) recovery observed with 5 M NaOH

Method Validation – Separation Scheme

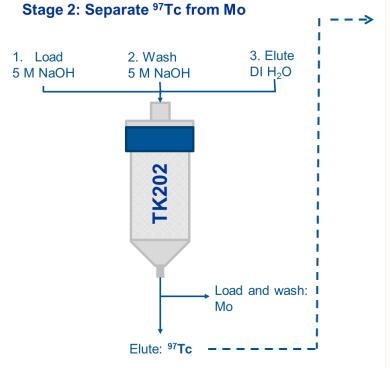


Experimental Methodology Mo Target Dissolution

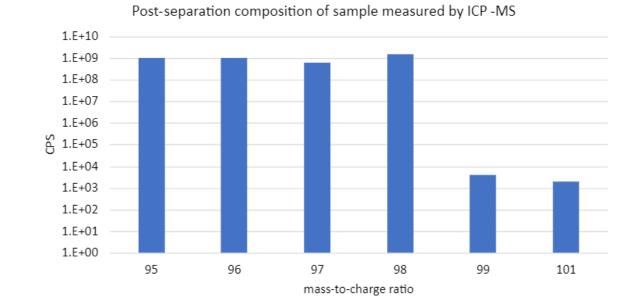
- 1. Add hydrogen peroxide and heat Mo target to 80°C for 5 minutes
- 2. Re-prepare sample in 5 M NaOH for direct loading onto TK202

TK202 Resin

- 3. Stage 1 ⁹⁷Ru collection
 - Initial sample screening of load and wash sample via gamma spectrometry to confirm production of ⁹⁷Ru
 - Impurities removed: ⁹⁵Tc, ⁹⁸Tc or ⁹⁹Tc
- 4. Stage 2 High purity ⁹⁷Tc collection
 - Eluent collected and measured via ICP-MS to confirm if ⁹⁷Tc is present



6 1 8 8 6 6 6 6 6


Results – Initial Screening of Stage 2: ⁹⁷Tc

97TC

Eluent measured by ICP-MS: confirmed Mo breakthrough requires further clean-up.

Summary

- Mo decontamination of 1.4x10⁶ in final fraction compared to dissolved Mo target
- High counts observed at m/z 95 to 98 indicating presence of large Mo contamination in eluent fraction → further separation required to remove Mo contribution at m/z 97.

Conclusions and next steps

- ⁹⁷Tc tracer is an industry-relevant tracer, which is an ideal candidate to be used by radioanalytical laboratories to asses the chemical yield for Tc separation.
- First target sent to NPL from a cyclotron-irradiation completed at the University of Birmingham.
- TK202 resin characterised for effective Mo, Tc and Ru separation.
 - Radiochemistry at NPL used to separate ⁹⁷Ru from Mo target.
 - Following ⁹⁷Ru decay, ⁹⁷Tc was separated and analysed via ICP-MS.
- ICP-MS measurement of ⁹⁷Tc shows additional Mo removal is required to remove ICP-MS interferences: mainly isobaric ⁹⁷Mo and ⁹⁸Mo tailing
 - Future work: investigate the use of tandem TK202 cartridges or alumina to improve Mo removal.

